EX8216 ETHERNET SWITCH # **Product Overview** The EX8216 Ethernet Switch, a member of Juniper Networks EX Series Ethernet Switches product family, delivers the performance, scalability, and high availability required for today's high-density data center, cloud computing, and Internet exchange environments. The EX8216 modular switch scales to a total capacity of 12.4 terabits per second (Tbps), making it the highly scalable solution required by today's high-performance networks while providing sufficient capacity to support the most demanding network environments in the future. # **Product Description** The 16-slot Juniper Networks® EX8216 Ethernet Switch, part of the Juniper Networks EX8200 line of Ethernet Switches, offers a high-density, high-performance platform for aggregating access switches deployed in data center top-of-rack or end-of-row applications, as well as for supporting Gigabit Ethernet server access in data center end-of-row deployments. The EX8216 delivers approximately 1.9 billion packets per second (Bpps) of high-density, wire-speed 10-Gigabit Ethernet performance for the largest data center networks. To maximize network investments, the EX8216 leverages the same EX8200 wire-speed line cards and power supplies used by the eight-slot Juniper Networks EX8208 Ethernet Switch, ensuring consistent performance across the entire product family. Working with the EX8208, as well as Juniper Networks EX4200 and EX3200 lines of Ethernet switches which all run the same Juniper Networks JUNOS® Software operating system, the EX8216 helps reduce capital and operational expenses across the data center infrastructure. # **EX8216 Ethernet Switch** The EX8216 modular switch includes an advanced set of hardware features enabled by the Juniper-designed EX-PFE2 ASIC. Working with the carrier-class JUNOS Software, the EX-PFE2 ASICs on each line card deliver the scalability needed to support high-performance data center networks. The EX8216 switch can accommodate any combination of EX8200 line Ethernet line cards. Options include the following: - **EX8200-48T**: a 48-port 10/100/1000BASE-T RJ-45 unshielded twisted pair (UTP) line card - EX8200-48F: a 48-port 100BASE-FX/1000BASE-X SFP fiber line card - EX8200-8XS: an eight-port 10GBASE-X SFP+ fiber line card Fully configured, a single EX8216 chassis can support up to 768 Gigabit Ethernet or 128 10-Gigabit Ethernet ports at wire speed for all packet sizes, delivering one of the highest line-rate 10-Gigabit Ethernet port densities in the industry. 1 At 21 rack units (RUs) high, two EX8216 switches can fit in a standard 42 RU rack, enabling up to 1,536 line-rate Gigabit Ethernet or 256 line-rate 10-Gigabit Ethernet ports in a single rack. In addition, the EX8216 is just 26.5 inches deep, enabling it to fit into typical data center cabinets and making it ideal for existing infrastructures or in locations where space is at a premium. The EX8216 switch fabric is capable of delivering 320 Gbps (full duplex) per slot, enabling scalable wire-rate performance on all ports for any packet size. The passive backplane design supports a future capacity of up to 12.4 Tbps, providing a built-in migration path to next-generation deployments. The base configuration of the EX8216 switch includes two sidemounted, hot-swappable fan trays with variable-speed fans, one Routing Engine module, and eight dedicated switch fabric modules (SFMs). The base EX8216 also ships with two 3,000 watt power supplies, although six power supply bays allow users to provision the chassis to provide the power and redundancy required for any type of deployment. A redundant EX8216 configuration adds a second Routing Engine module to provide hot standby resiliency, as well as a full complement of six power supplies, providing complete redundancy and availability. Except for the switch fabric modules, all components are accessible from the front, simplifying operations, maintenance, and upgrades. A front-panel chassis level LCD displays Routing Engine status as well as chassis component alarm information for rapid problem identification and resolution. The LCD also provides a flexible, user-friendly interface for performing device initialization and configuration rollbacks, reporting system status and alarm notifications, or restoring the switch to its default settings. Table 1: EX8216 Features at a Glance | Table 1: EX8216 Features at a Glance | | | |--------------------------------------|--|--| | FEATURES | DESCRIPTION | | | Chassis | 21 RU; 26.5 in (67.4 cm) deep; 17.3 in (43.9 cm) wide 16 dedicated I/O slots 12.4 Tbps backplane capacity Dedicated data, control, and management planes LCD panel for system monitoring | | | Power | Energy efficiency: up to 205,000 packets per second per watt 6 load sharing power supplies 15,000 W maximum power configuration 220 VAC N+1 or N+N redundancy | | | Cooling | Redundant fans and controllersSide-to-side airflow | | | Fabric | 320 Gbps (full duplex) per slot fabric capacity Eight active fabric cards for N+1 redundancy Full line-rate forwarding even under failure conditions | | | Routing
engine | 1+1 redundancy Master and backup Routing Engines 2 gigabytes DRAM; 2 gigabytes flash memory Console + auxiliary serial and Ethernet management ports USB storage interface | | | Operating system | JUNOS Software | | | High
availability | Hardware designed for continuous operation: Secure, modular architecture that isolates faults Separate control and forwarding planes that enhance scalability and resiliency Transparent failover and network recovery Graceful Routing Engine switchover (GRES) | | Nonstop active routing (NSR)* | FEATURES | PECODIPTION | |-----------------------|--| | FEATURES | DESCRIPTION | | Layer 2
Features | Jumbo frames (9,216 bytes maximum) 4,096 VLANs VLAN Registration Protocol 802.3ad – Link Aggregation Control Protocol (LACP) 802.1D – Spanning Tree Protocol (STP) 802.1w – Rapid Spanning Tree Protocol (RSTP) 802.1s – Multiple Spanning Tree Protocol (MSTP) Redundant Trunk Group (RTG) VLAN Spanning Tree Protocol (VSTP) | | Layer 3
Features | Static routing RIP v1/v2 OSPF v1/v2 Virtual Router Redundancy Protocol (VRRP) BGP (Advanced Feature License) IS-IS (Advanced Feature License) IPv6 (Advanced Feature License)* Bidirectional Forwarding Detection (BFD) protocol | | Hardware
Tunneling | GRE tunnels (Advanced Feature license)* MPLS capabilities (Advanced Feature license)* | | Multicast | Internet Group Management Protocol (IGMP) v1/v2/v3 IGMP snooping Protocol Independent Multicast PIM-SM, PIM-SSM, PIM-DM, MSDP | | Firewall
Filters | Ingress and egress L2-L4 access control lists (ACLs): Port ACLs VLAN ACLs Router ACLs Control plane denial of service (DoS) protection | ^{*} Roadmap Table 1: EX8216 Features at a Glance (continued) | Table 1: Exoz to reacutes at a statice (continueu) | | | |--|---|--| | FEATURES | DESCRIPTION | | | Quality of
service (QoS) | 2,000 policers per chassis 8 egress queues per port Weighted random early detection (WRED) scheduling Scheduled weighted round-robin (SWRR) queuing Strict priority queuing Multi-field classification (L2-L4) for scheduling and rewrite | | | Management | JUNOS Software command-line interface (CLI) JUNOScript Embedded Web-based management (Juniper Networks J-Web Software) Network and Security Manager support LCD panel SNMP v1/v2/v3 RADIUS TACACS+ Extensive MIB support Local and remote analyzer (mirroring) Link Layer Discovery Protocol (LLDP) Advanced Insight Solutions (AIS) | | # **Deployment Scenarios** The EX8216 modular switch is designed for a variety of data center deployments, providing a high-performance, high-density core platform that reduces cost and complexity while improving overall scalability and offering carrier-class reliability. Populated entirely with 10-Gigabit Ethernet line cards, a single EX8216 Ethernet Switch can accommodate up to 128 high-speed, line-rate uplinks from access-layer devices such as EX4200 switches deployed in Virtual Chassis top-of-rack configurations, delivering a highly scalable solution that can support more servers with fewer actual switches. A single EX8216 chassis can also support up to 768 Gigabit Ethernet ports to serve as a highly effective, end-of-row server access switch. The high Gigabit Ethernet and 10-Gigabit Ethernet port densities on the EX8216 enable the consolidation of aggregation and core layers, dramatically simplifying data center architectures and reducing total cost of ownership (TCO) while lowering power, space, and cooling requirements. # **Architecture and Key Components** Juniper Networks EX8200 line of Ethernet switches, including the EX8216 and EX8208, share a number of distinct architectural elements. The Routing Engines employed by these switches run JUNOS Software, which processes all Layer 2 and Layer 3 protocols and manages individual chassis components, while the switch fabrics provide the central crossbar matrix through which all data traffic passes. Figure 1: EX8216 modular switch offers a high-density, scalable solution for aggregating 10-Gigabit Ethernet uplinks from access-layer devices in the data center, as well as a combined core in consolidated network deployments. The EX8200 line cards, which are common across all EX8200 platforms, include ASIC-based packet forwarding engines—the EX-PFE2—that process network traffic at wire rates, as well as a line-card processor that provides scalable local control. The EX8216 architecture was designed for very large data center deployments, with no head-of-line blocking, a single-tier low-latency switch fabric, efficient multicast replication handling, and deep buffering to ensure performance at scale. The EX8216 chassis midplane distributes the control and management plane signals over independent paths to the various system components and distributes power throughout the system. Data plane signals pass directly from the EX8200 line cards to the EX8216 switch fabric modules via a unique connector system that provides unparalleled signal quality for future generations of fabric technologies. To maintain uninterrupted operation, the EX8216 switch's two fan trays cool the line cards, Routing Engine, and switch fabric modules with redundant, variable speed fans. The EX8200 line's power supplies convert building power to the internal voltage required by the system. All EX8216 components are hot-swappable, and all central functions are available in redundant configurations, providing high operational availability by allowing continuous system operation during maintenance or repairs. # Routing Engine Module The EX8216 Routing Engine module supports control and management plane functionality with an integrated Routing Engine that features a 1.2 GHz PowerPC processor with 2 gigabytes of DRAM and 2 gigabytes of flash storage. A dedicated front-panel RJ-45 Gigabit Ethernet port on the Routing Engine module supports out-of-band system management and monitoring, while an external USB port allows easy uploading and storage of software images, configuration files, and logs. Direct console access is available through a dedicated serial port, while an auxiliary console interface can support remote modem access to the switch. The EX8216 switch's Routing Engine is based on the same field-proven hardware architecture used by Juniper Networks routers, bringing the same carrier-class performance and reliability to the EX8216 that Juniper's routers bring to the world's largest service provider networks. The Routing Engine's central CPU performs all system control functions and maintains hardware forwarding table and routing protocol states for the EX8216 switch. Dedicated hardware on the Routing Engine module supports chassis management functions such as environmental monitoring, while communication between Routing Engine modules and individual line cards takes place over a dedicated internal Gigabit Ethernet out-of-band control interface. #### EX8216 Switch Fabric The switch fabric for the EX8216, distributed across eight rearaccessible switch fabric modules, serves as the central nonblocking matrix through which all network data passes. All eight SFMs in the EX8216 are always active, providing ample capacity to deliver line-rate Layer 2 and Layer 3 switching on all ports for packets of any size. If one switch fabric module were to fail, the remaining modules gracefully load-balance the data traffic to maintain line-rate performance on all 10-Gigabit ports without dropping packets. The SFMs are hot-swappable and field-replaceable, enabling failed units to be easily replaced without service interruption. The eight active, load-sharing switch fabric modules collectively deliver up to 320 Gbps (full duplex) of packet data bandwidth per line-card slot, providing sufficient capacity to support future 100-Gigabit Ethernet deployments without requiring any forklift upgrades or changes to the EX8216 chassis. The EX8216 backplane connector system is designed to support switch fabric bandwidth of more than 12.4 Tbps—enabling the capacity of the EX8216 to potentially more than double in the future. #### Power The EX8216 chassis contains six power supply bays, providing complete flexibility for both provisioning and redundancy. Each EX8200 AC power supply delivers 3,000 watts (W) of power at high-line (16 A at 220 V) to the chassis. The EX8216 also supports a 2,000/1,200 W power supply for high/low-line operation. The EX8200 AC power supplies are more than 90 percent efficient at a wide range of loads, minimizing building power requirements and reducing overall power consumption. These power supplies are interchangeable across the EX8200 line, simplifying maintenance and sparing. Although only two power supplies are required for basic EX8216 configuration and power-up, the six power supply bays provide the capacity required to power all possible line-card configurations, and to support N+1 or N+N power redundancy to protect against both component and line input failures. The actual number of power supplies required depends on the combination of line cards installed and the desired level of redundancy (see table). For example, 9,600 W is required to support a chassis fully populated with 128 10-Gigabit Ethernet ports, while 9,000 W will support a mix of 10-Gigabit Ethernet and Gigabit Ethernet line cards. Table 2: EX8216 Power Capacity | rable 2. Excellent ower outpacky | | | | | |--|---------------|-------------|--|--| | MAXIMUM SYSTEM POWER CONSUMPTION | NORMAL
FAN | HIGH
FAN | | | | Base system (one Routing Engine; eight switch fabric modules; two fan trays) | | 2,280 W | | | | Redundant system (two Routing Engines; eight switch fabric modules; two fan trays) | 1,180 W | 2,380 W | | | | MAXIMUM LINE CARD POWER CONSUMPTION | | | | | | EX8200-8XS 8-port 10-Gigabit Ethernet
SFP+ line card | 450 W | | | | | EX8200-48T 48-port 10/100/1000BASE-T RJ-45 line card | 350 W | | | | | EX8200-48F 48-port 100FX/1000BASEX SFP line card | 330 W | | | | | MAXIMUM POWER CAPACITY | | | | | | 3 kW 220 V AC 5+1 power supply redundancy | 15,000 W | | | | | 3 kW 220 V AC 3+3 power supply redundancy | 9,000 W | | | | 10.000 W 6,000 W # **Features and Benefits** 2 kW 220 V AC 5+1 power supply redundancy 2 kW 110 V AC 5+1 power supply redundancy ## High Availability The EX8216 switch delivers a number of high availability features to ensure uninterrupted, carrier-class performance, and also includes an extra slot to accommodate a redundant Routing Engine module. When a second Routing Engine module is present, it serves as a backup in hot standby mode, ready to take over in the event of a master Routing Engine failure. If the master fails, the integrated Layer 2 and Layer 3 graceful Routing Engine switchover (GRES) feature of JUNOS Software ensures the seamless transfer of control to the backup, maintaining uninterrupted access to applications, services, and IP communications. #### Carrier-Class Operating System The EX8216 runs the same JUNOS Software used by the EX3200 and EX4200 lines of switches, as well as the Juniper Networks routers that power the world's largest and most complex networks. By using a common operating system, Juniper Networks delivers a consistent implementation and operation of control plane features across all products. To maintain that consistency, JUNOS adheres to a highly disciplined development process that uses a single source code, follows a single quarterly release train, and employs a highly available modular architecture that prevents isolated failures from bringing down an entire system. These attributes are fundamental to the core value of the software, enabling all JUNOS-powered products to be updated simultaneously with the same software release. All features are fully regression-tested, making each new release a true superset of the previous version; customers can deploy the software with complete confidence that all existing capabilities will be maintained and operate in the same way. # Simplified Management and Operations A range of system management options are available for the EX8216 Ethernet switches. The standard JUNOS CLI provides the same granular management capabilities and scripting parameters found in all JUNOS-powered devices. The EX8216 switches also include the integrated J-Web management tool, an embedded device manager that allows users to configure, monitor, troubleshoot, and perform device-level maintenance on individual switches via a browser-based graphical interface. In addition, integrated JUNOScript Automation tools provide early detection and automatic resolution of potential problems related to the operating system. Juniper Networks Network and Security Manager provides system-level management across all EX8200, EX4200, and EX3200 lines of Ethernet switches, as well as other Juniper Networks products deployed throughout the network—all from a single console. Finally, performance data from EX8216 switches can be exported to leading third-party management systems such as HP OpenView, IBM Tivoli, and Computer Associates Unicenter, where it can be combined with management data from other network components to provide a complete, consolidated view of network operations. In addition, the EX8200 line supports Juniper Networks Advanced Insight Solutions (AIS), a comprehensive set of tools that enable Juniper Networks Technical Services to automate the delivery of tailored, proactive network intelligence and support services. # **EX8216 Modular Switch Specifications** ## **Physical Specifications** #### Dimensions (W x H x D): • 17.3 x 36.5 x 26.5* in (43.9 x 92.7 x 67.4* cm) * 28.2 in / 71.6 cm depth including all hardware #### Weight: • Base configuration: 270 lb (122.5 kg) • Redundant configuration: 308 lb (139.7 kg) • Chassis with midplane: 160 lb (72.6 kg) • Fully loaded chassis: 536 lb (243.6 kg) # Hardware Specifications • Analyzer sessions: 7 (local or remote) • Queues per port: 8 • Policers: 2,000 per chassis • Media access control (MAC) addresses: 160,000 • VLANs: 4,096 • Firewall filters (ACLs-security and QoS): 54,000 • Link aggregation group (LAG) (ports/groups): 12/255 • GRE tunnels: 2,000 • IPv4 unicast routes: 512,000 maximum • IPv4 multicast routes: 128,000 maximum • IPv6 unicast routes: 256,000 maximum • IPv6 multicast routes: 128,000 maximum • Number of multicast groups: 16,000 • Address Resolution Protocol (ARP) entries: 100,000 • L3 next hops: 220,000 • Jumbo frames: 9,216 bytes maximum • Buffer per 10-Gigabit Ethernet port: 512 MB • Buffer per Gigabit Ethernet port: 42 MB # EX8216 System Capacity • Maximum system throughput: 6.2 Tbps • Maximum data rate per slot: 320 Gbps (full duplex) #### **IEEE Compliance** • IEEE 802.1AB: Link Layer Discovery Protocol (LLDP) • IEEE 802.1D-2004: Spanning Tree Protocol (STP) • IEEE 802.1p: Class-of-service (CoS) prioritization • IEEE 802.1Q-2006: VLAN tagging • IEEE 802.1s: Multiple Spanning Tree Protocol (MSTP) • IEEE 802.1w: Rapid Spanning Tree Protocol (RSTP) • IEEE 802.1X: Port-based access control IEEE 802.3: 10BASE-TIEEE 802.3u: 100BASE-T • IEEE 802.3ab: 1000BASE-T • IEEE 802.3z: 1000BASE-X • IEEE 802.3ae: 10-Gigabit Ethernet • IEEE 802.3x: Pause Frames/Flow Control • IEEE 802.3ad: Link Aggregation Control Protocol (LACP) # RFC Compliance • RFC 1122: Host Requirements • RFC 768: UDP • RFC 791: IP • RFC 783: Trivial File Transfer Protocol (TFTP) • RFC 792: Internet Control Message Protocol (ICMP) RFC 793: TCP • RFC 826: ARP ## RFC Compliance (continued) • RFC 894: IP over Ethernet • RFC 903: Reverse Address Resolution Protocol (RARP) • RFC 906: TFTP Bootstrap • RFC 1027: Proxy ARP • RFC 2068: HTTP server • RFC 1812: Requirements for IP Version 4 Routers • RFC 1519: Classless Inter-Domain Routing (CIDR) • RFC 1256: IPv4 ICMP Router Discovery Protocol (IRDP) • RFC 1058: RIP v1 • RFC 2453: RIP v2 • RFC 1112: IGMP v1 • RFC 2236: IGMP v2 • RFC 3376: IGMP v3 • RFC 1492: TACACS+ • RFC 2138: RADIUS Authentication • RFC 2139: RADIUS Accounting • RFC 2267: Network Ingress Filtering • RFC 2030: Simple Network Time Protocol (SNTP) • RFC 854: Telnet client and server • RFC 951, 1542: BootP • RFC 2131: B00TP/Dynamic Host Configuration Protocol (DHCP) relay agent and DHCP server • RFC 1591: Domain Name System (DNS) • RFC 2338: VRRP • RFC 2328: OSPF v2 (Edge-mode) • RFC 1587: OSPF NSSA Option • RFC 1765: OSPF Database Overflow • RFC 2154: OSPF w/Digital Signatures (Password, MD-5) • RFC 2370: OSPF Opaque LSA Option • RFC 3623: OSPF Graceful Restart • RFC 2362: PIM-SM (Edge-mode) PIM-DM Draft IETF PIM: Dense Mode draft-ietf-idmr-pim-dm-05.txt, draft-ietf-pim-dm-new-v2-04.txt RFC 3569: Draft-ietf-ssm-arch-06.txt PIM-SSM PIM Source Specific Multicast • RFC 1771: Border Gateway Protocol 4 • RFC 1965: Autonomous System Confederations for BGP • RFC 2796: BGP Route Reflection (supersedes RFC 1966) • RFC 1997: BGP Communities Attribute • RFC 1745: BGP4/IDRP for IP-OSPF Interaction • RFC 2385: TCP MD5 Authentication for BGPv4 RFC 2439: BGP Route Flap Damping • RFC 2918: Route Refresh Capability for BGP-4 • RFC 3392: Capabilities Advertisement with BGP-4 • RFC 2796: Route Reflection • RFC 4360: BGP Extended Communities Attribute • RFC 4486: Subcodes for BGP Cease Notification message RFC 1195: Use of Open Systems Interconnection (OSI) IS-IS for Routing in TCP/IP and Dual Environments (TCP/IP transport only) • RFC 2474: DiffServ Precedence, including 8 queues/port • RFC 2598: DiffServ Expedited Forwarding (EF) RFC 2597: DiffServ Assured Forwarding (AF) • RFC 2475: DiffServ Core and Edge Router Functions Draft-ietf-idr-restart-10.txt: Graceful Restart Mechanism for BGP • Draft-ietf-isis-restart-02: Restart Signaling for IS-IS • Draft-ietf-bfd-base-05.txt: Bidirectional Forwarding Detection # **EX8216 Modular Switch Specifications (continued)** #### Services and Manageability - JUNOS Software CLI - Juniper Networks J-Web Software (embedded Web-based management) - Out-of-band management: Serial; 10/100/1000BASE-T Ethernet - ASCII configuration file - Rescue configuration - Configuration rollback - Image rollback - · LCD management - Element management tools: Network and Security Manager - Proactive services support via Advanced Insight Solutions (AIS) - SNMP: v1, v2c, v3 - RMON (RFC 2819) Groups 1, 2, 3, 9 - Network Time Protocol (NTP) - DHCP server - DHCP relay with Option 82 - RADIUS - TACACS+ - SSHv2 - Secure copy - HTTP/HTTPs - DNS resolver - Syslog logging - · Environment monitoring - Temperature sensor - Config-backup via FTP/secure copy #### Network Management—MIB support - RFC 1155: Structure of Management Information (SMI) - RFC 1157: SNMPv1 - RFC 1905, RFC 1907: SNMP v2c, SMIv2 and Revised MIB-II - RFC 2570-2575: SNMPv3, user-based security, encryption, and authentication - RFC 2576: Coexistence between SNMP Version 1, Version 2, and Version 3 - RFC 1212, RFC 1213, RFC 1215: MIB-II, Ethernet-like MIB and traps - RFC 2578: SNMP Structure of Management Information MIB - RFC 2579: SNMP Textual Conventions for SMIv2 - RFC 2925: Ping/Traceroute MIB - RFC 2665: Ethernet-like interface MIB - RFC 1643: Ethernet MIB - RFC 1493: Bridge MIB - RFC 2096: IPv4 Forwarding Table MIB - RFC 2011: SNMPv2 for IP using SMIv2 - RFC 2012: SNMPv2 for transmission control protocol using SMIv2 - RFC 2013: SNMPv2 for user datagram protocol using SMIv2 - RFC 2863: Interface MIB - RFC 3413: SNMP Application MIB - RFC 3414: User-based Security model for SNMPv3 - RFC 3415: View-based Access Control Model for SNMP - RFC 3621: Power over Ethernet (PoE)-MIB (PoE switches only) - RFC 1724: RIPv2 MIB - RFC 2863: Interface Group MIB - RFC 2932: IPv4 Multicast MIB - RFC 2787: VRRP MIB - RFC 1850: OSPFv2 MIB - RFC 1657: BGP-4 MIB ## Services and Manageability (continued) - RFC 2819: RMON MIB - RFC 2287: System Application Packages MIB - RFC 4188: STP and Extensions MIB - RFC 4363: Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering, and VLAN extensions - RFC 2922: LLDP MIB - Draft-ietf-idr-bgp4-mibv2-02.txt: Enhanced BGP-4 MIB - Draft-ietf-isis-wg-mib-07 - Draft-blumenthal-aes-usm-08 - Draft-reeder-snmpv3-usm-3desede-00 - Draft-ietf-idmr-igmp-mib-13 - Draft-ietf-idmr-pim-mib-09 - Draft-ietf-bfd-mib-02.txt #### **Troubleshooting** - Debugging: CLI via console, Telnet, or SSH - Diagnostics: Show, debug, and statistics commands - Analyzer session: Ingress and/or egress traffic on multiple source ports monitored to one destination port or VLAN - Local port and remote VLAN analyzers (up to seven sessions) - IP tools: Extended ping and trace - Juniper Networks commit and rollback #### **Environmental Ranges** - Operating temperature: 32° to 104° F (0° to 40° C) - Storage temperature: -40° to 158° F (-40° to 70° C) - Operating altitude: up to 10,000 ft (3,048 m) - Non-operating altitude: up to 16,000 ft (4,877 m) - Relative humidity operating: 5% to 90% (noncondensing) - Relative humidity non-operating: 0% to 95% (noncondensing) - Acoustic noise: 62 dBA (based on operational tests taken from bystander position [front] and performed at 23° C in compliance with ISO 7779) # Safety and Compliance - CSA 60950-1 (2003) Safety of Information Technology Equipment - UL 60950-1 (2003) Safety of Information Technology Equipment - EN 60950-1 (2001) Safety of Information Technology Equipment - IEC 60950-1 (2001) Safety of Information Technology Equipment (with country deviations) - EN 60825-1 +A1+A2 (1994) Safety of Laser Products— Part 1: Equipment Classification - EN 60825-2 (2000) Safety of Laser Products—Part 2: Safety of Optical Fiber Comm. Systems - C-UL to CAN/CSA 22.2 No.60950-1 (First Edition) - TUV/GS to EN 60950-1, Amendment A1-A4, A11 - CB-IEC60950-1, all country deviations - CE ## **EMC** - EN 300 386 V1.3.3 (2005) Telecom Network Equipment—EMC requirements - FCC Part 15 Class A (2007) USA Radiated Emissions - EN 55022 Class A (2006) European Radiated Emissions - VCCI Class A (2007) Japanese Radiated Emissions - ICES-003 Class A - AS/NZS CISPR 22 Class A - CISPR 22 Class A # **EX8216 Modular Switch Specifications (continued)** #### Safety and Compliance (continued) #### **Immunity** - EN 55024 +A1+A2 (1998) Information Technology Equipment Immunity Characteristics - EN-61000-3-2 (2006) Power Line Harmonics - EN-61000-3-3 +A1 +A2 +A3 (1995) Power Line Voltage Fluctuations - EN-61000-4-2 +A1 +A2 (1995) Electrostatic Discharge - EN-61000-4-3 +A1+A2 (2002) Radiated Immunity - EN-61000-4-4 (2004) Electrical Fast Transients - EN-61000-4-5 (2006) Surge - EN-61000-4-6 (2007) Immunity to Conducted Disturbances - EN-61000-4-11 (2004) Voltage Dips and Sags #### **Customer-Specific Requirements** - GR-63-Core (2006) Network Equipment, Building Systems (NEBS) Physical Protection - GR-1089-Core (2006) EMC and Electrical Safety for Network Telecommunications Equipment - SR-3580 (1995) NEBS Criteria Levels (Level 3) (pending) #### Environmental Reduction of Hazardous Substances (ROHS) 5/6 #### Telco • Common Language Equipment Identifier (CLEI) code # **Performance-Enabling Services and Support** Juniper Networks is the leader in performance-enabling services and support, which are designed to accelerate, extend, and optimize your high-performance network. Our services allow you to bring revenue-generating capabilities online faster so you can realize bigger productivity gains, faster rollouts of new business models and ventures, and greater market reach, while generating higher levels of customer satisfaction. At the same time, Juniper Networks ensures operational excellence by optimizing your network to maintain required levels of performance, reliability, and availability. For more details, please visit www.juniper.net/products-services. # **Ordering Information** | MODEL NUMBER | DESCRIPTION | | | | | |-------------------|--|--|--|--|--| | Hardware | | | | | | | EX8216-BASE-AC | Base AC-powered EX8216 system configuration:
16-slot chassis with passive midplane and 2x fan
tray, 1x routing engine, 8x switch fabric modules,
2x 3,000 W AC PSUs with power cords, and all
necessary blank panels | | | | | | EX8216-REDUND-AC | Redundant AC-powered EX8216 system configuration: 16-slot chassis with passive midplane and 2x fan tray, 2x routing engines, 8x switch fabric modules, 6x 3,000 W AC PSUs with power cords, and all necessary blank panels | | | | | | EX8216-REDUND-AC2 | Redundant 2 kW AC-powered EX8216 system configuration: 16-slot chassis with passive midplane and 2x fan tray, 2x routing engines, 8x switch fabric modules, 6x 2,000 W AC PSUs with power cords, and all necessary blank panels | | | | | | EX8216-RE320 | Routing Engine for EX8216, redundant | | | | | | EX8216-SF320-S | Switch Fabric module for EX8216, spare | | | | | | EX8216-CHAS-S | EX8216 chassis with midplane, spare | | | | | | EX8216-FAN-S | EX8216 fan tray, spare | | | | | | EX8200-PWR-AC3K | AC power supply, 3,000 W at 220 V, redundant (AC power cords sold separately) | | | | | | EX8200-PWR-AC2K | AC power supply, 2,000 W at 220 V (1,200 W at 110 V), redundant (AC power cords sold separately) | | | | | | EX8200 Line Cards | | | | | | | EX8200-48T | 48-port 10/100/1000BASE-T RJ-45 line card | | | | | | EX8200-48F | 48-port 100FX/1000BASEX SFP line card; requires SFP optics sold separately | | | | | | EX8200-8XS | 8-port 10 GbE SFP+ line card; requires SFP+ optics sold separately | | | | | | Software | Software | | | | | | EX8216-AFL | EX8216 Advanced Feature License
(BGP, IS-IS, GRE, MPLS, IPv6) | | | | | # **About Juniper Networks** Juniper Networks, Inc. is the leader in high-performance networking. Juniper offers a high-performance network infrastructure that creates a responsive and trusted environment for accelerating the deployment of services and applications over a single network. This fuels high-performance businesses. Additional information can be found at www.juniper.net. # Corporate and Sales Headquarters Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA Phone: 888.JUNIPER (888.586.4737) or 408.745.2000 Fax: 408.745.2100 # **APAC Headquarters** Juniper Networks (Hong Kong) 26/F, Cityplaza One 1111 King's Road Taikoo Shing, Hong Kong Phone: 852.2332.3636 Fax: 852.2574.7803 # **EMEA Headquarters** Juniper Networks Ireland Airside Business Park Swords, County Dublin, Ireland Phone: 35.31.8903.600 Fax: 35.31.8903.601 Copyright 2009 Juniper Networks, Inc. All rights reserved. Juniper Networks, the Juniper Networks logo, JUNOS, NetScreen, and ScreenOS are registered trademarks of Juniper Networks, Inc. in the United States and other countries. JUNOSe is a trademark of Juniper Networks, Inc. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners. Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice. To purchase Juniper Networks solutions, please contact your Juniper Networks representative at 1-866-298-6428 or authorized reseller. Printed on recycled paper. 1000283-004-EN June 2009