Notes, Notices, and Cautions

NOTE: A NOTE indicates important information that helps you make better use of your computer.

NOTICE: A NOTICE indicates either potential damage to hardware or loss of data and tells you how to avoid the problem.

CAUTION: A CAUTION indicates a potential for property damage, personal injury, or death.

Information in this document is subject to change without notice.
© 2003 - 2007 Dell Inc. All rights reserved.
Reproduction in any manner whatsoever without the written permission of Dell Inc. is strictly forbidden.

Trademarks used in this text: Dell, Dell OpenManage, the DELL logo, Inspiron, Dell Precision, Dimension, OptiPlex,
PowerConnect, PowerApp, PowerVault, Axim, DellNet, and Latitude are trademarks of Dell Inc. Microsoft and Windows are registered trademarks of Microsoft Corporation.

Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products. Dell Inc. disclaims any proprietary interest in trademarks and trade names other than its own.

May 2007
Contents

1 Introduction

PowerConnect 5324 .. 19
Features ... 19
 General Features .. 20
 MAC Address Supported Features 21
 Layer 2 Features 21
 VLAN Supported Features 22
 Spanning Tree Protocol Features 23
 Link Aggregation 23
 Layer 3 Features 24
 Quality of Service Features 24
 Device Management Features 25
 Security Features 26
 Locked Port Support 26
Additional CLI Documentation 27

2 Hardware Description

Device Port Configurations 29
 PowerConnect 5324 Front Panel Port Description 29
 PowerConnect Back Panel Port Description 30
 Device Ports .. 30

Physical Dimensions 31

LED Definitions ... 31
 Port LEDs .. 31
 System LEDs ... 32

Hardware Components 33
 Power Supplies 33
 Reset Button ... 34
 Ventilation System 34
3 Installing the PowerConnect Device

Installation Precautions ... 35
Site Requirements ... 36
Unpacking ... 36
 Package Contents .. 36
 Unpacking the Device ... 36
Mounting the Device .. 37
 Overview ... 37
 Mounting the System ... 37
 Installing the Device without a Rack 38
Connecting the Device .. 38
 Connecting a Device to a Terminal 38
 Connecting a Device to a Power Supply 39
Port Connections, Cables, and Pinout Information 40
 RJ-45 Connections for 10/100/1000BaseT Ports 40
Port Default Settings .. 41
 Auto-Negotiation .. 41
 MDI/MDIX .. 42
 Flow Control .. 42
 Back Pressure ... 42
 Switching Port Default Settings 42

4 Starting and Configuring the Device

Configure the Terminal ... 43
Booting the Device .. 44
Configuration Overview .. 48
Initial Configuration .. 48
 Static IP Address and Subnet Mask 49
 Static Route Configuration 49
 Assigning Static IP Addresses on an Inband Interface 49
 Verifying the IP and Default Gateway Addresses 50
User Name ... 50
6 Configuring System Information

Defining General Device Information .. 76
 Viewing the Asset Page ... 76
 Viewing System Health Information .. 85
 Viewing the Versions Page .. 87
 Resetting the Device .. 89

Configuring SNTP Settings ... 90
 Polling for Unicast Time Information 91
 Polling for Anycast Time Information 91
 Broadcast Time Information .. 91
 Defining SNTP Global Parameters .. 92
 Defining SNTP Authentication Methods 93
 Defining SNTP Servers .. 96
 Defining SNTP Interfaces .. 101

Managing Logs ... 104
 Defining Global Log Parameters .. 104
 Displaying RAM Log Table .. 108
 Displaying the Log File Table .. 111
 Configuring the Remote Log Server Settings Page 115

Defining Device IP Addresses ... 119
 Defining Default Gateways .. 119
 Defining IP Interfaces .. 120
 Defining DHCP IP Interface Parameters 123
 Configuring Domain Name Systems ... 127
 Defining Default Domains .. 130
 Mapping Domain Host ... 132
 Configuring ARP ... 134

Running Cable Diagnostics ... 139
 Viewing Copper Cable Diagnostics .. 139
 Viewing Optical Transceiver Diagnostics 141
<table>
<thead>
<tr>
<th>Managing Device Security</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining Access Profiles</td>
<td>145</td>
</tr>
<tr>
<td>Defining Authentication Profiles</td>
<td>151</td>
</tr>
<tr>
<td>Assigning Authentication Profiles</td>
<td>155</td>
</tr>
<tr>
<td>Defining the Local User Databases</td>
<td>159</td>
</tr>
<tr>
<td>Defining Line Passwords</td>
<td>162</td>
</tr>
<tr>
<td>Defining Enable Password</td>
<td>164</td>
</tr>
<tr>
<td>Defining TACACS+ Settings</td>
<td>165</td>
</tr>
<tr>
<td>Configuring RADIUS Global Parameters</td>
<td>170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defining SNMP Parameters</th>
<th>177</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining Communities</td>
<td>177</td>
</tr>
<tr>
<td>Defining Traps</td>
<td>182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Managing Files</th>
<th>186</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Management Overview</td>
<td>186</td>
</tr>
<tr>
<td>Downloading Files</td>
<td>187</td>
</tr>
<tr>
<td>Uploading Files</td>
<td>189</td>
</tr>
<tr>
<td>Copying Files</td>
<td>191</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defining Advanced Settings</th>
<th>193</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring General Device Tuning Parameters</td>
<td>193</td>
</tr>
</tbody>
</table>

7 Configuring Device Information

<table>
<thead>
<tr>
<th>Configuring Network Security</th>
<th>197</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Security Overview</td>
<td>197</td>
</tr>
<tr>
<td>Configuring Port Based Authentication</td>
<td>199</td>
</tr>
<tr>
<td>Configuring Advanced Port Based Authentication</td>
<td>203</td>
</tr>
<tr>
<td>Authenticating Users</td>
<td>207</td>
</tr>
<tr>
<td>Configuring Port Security</td>
<td>209</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuring Ports</th>
<th>214</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining Port Parameters</td>
<td>214</td>
</tr>
<tr>
<td>Defining LAG Parameters</td>
<td>221</td>
</tr>
<tr>
<td>Enabling Storm Control</td>
<td>225</td>
</tr>
<tr>
<td>Defining Port Mirroring Sessions</td>
<td>228</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuring Address Tables</th>
<th>231</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining Static Addresses</td>
<td>231</td>
</tr>
<tr>
<td>Viewing Dynamic Addresses</td>
<td>234</td>
</tr>
</tbody>
</table>
Configuring GARP 237
 Defining GARP Timers 237

Configuring the Spanning Tree Protocol 240
 Defining STP Global Settings 240
 Defining STP Port Settings 244
 Defining STP LAG Settings 249
 Configuring Rapid Spanning Tree 251

Configuring VLANs 254
 Defining VLAN Members 255
 Defining VLAN Ports Settings 261
 Defining VLAN LAG Settings 264
 Defining VLAN Protocol Groups 267
 Adding Protocol Ports 269
 Configuring GVRP 270

Aggregating Ports 274
 Defining LACP Parameters 275
 Defining LAG Membership 278

Multicast Forwarding Support 279
 Defining Multicast Global Parameters 279
 Adding Bridge Multicast Address Members .. 282
 Assigning Multicast Forward All Parameters . 287
 IGMP Snooping 290

8 Viewing Statistics

Viewing Tables 296
 Viewing Utilization Summary 296
 Viewing Counter Summary 298
 Viewing Interface Statistics 299
 Viewing Etherlike Statistics 302
 Viewing GVRP Statistics 306

Viewing RMON Statistics 313
 Viewing RMON Statistics Group 313
 Viewing RMON History Control Statistics .. 316
 Viewing the RMON History Table 318
 Defining Device RMON Events 321
 Viewing the RMON Events Log 324
9 Configuring Quality of Service

Quality of Service (QoS) Overview .. 336
CoS Services .. 337
Defining CoS Global Parameters ... 339
 Configuring QoS Global Settings 339
 Defining QoS Interface Settings 341
 Defining Queue Settings ... 344
 Mapping CoS Values to Queues 347
 Mapping DSCP Values to Queues 349

10 Device Specifications

Port and Cable Specifications ... 351
 Port Specifications .. 351
Operating Conditions ... 352
Physical Device Specifications .. 352
Device Memory Specifications .. 352
Feature Specifications ... 353
 VLAN .. 353
 Quality of Service ... 353
 Layer 2 Multicast .. 353
 Device Security ... 353
 Additional Switching Features 353
 Device Management ... 354

Glossary
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>PowerConnect 5324 Front Panel</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1-2</td>
<td>PowerConnect 5324 Back Panel</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2-3</td>
<td>PowerConnect 5324 Front Panel</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2-4</td>
<td>Device Back Panel</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2-5</td>
<td>Console Port</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2-6</td>
<td>RJ-45 Copper based 10/100/1000 BaseT LEDs</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2-7</td>
<td>SFP Port LED</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2-8</td>
<td>System LEDs</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3-9</td>
<td>Connection Rack Mounting Brackets</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3-10</td>
<td>Connecting to PowerConnect 5324 Console Port</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3-11</td>
<td>Connecting to Device Power Connector</td>
<td>40</td>
</tr>
<tr>
<td>Figure 4-12</td>
<td>Installation and Configuration Flow</td>
<td>43</td>
</tr>
<tr>
<td>Figure 5-13</td>
<td>Switch Administrator Components</td>
<td>65</td>
</tr>
<tr>
<td>Figure 5-14</td>
<td>Port LED Indicators</td>
<td>66</td>
</tr>
<tr>
<td>Figure 6-15</td>
<td>System</td>
<td>75</td>
</tr>
<tr>
<td>Figure 6-16</td>
<td>Asset</td>
<td>76</td>
</tr>
<tr>
<td>Figure 6-17</td>
<td>Time Synchronization</td>
<td>81</td>
</tr>
<tr>
<td>Figure 6-18</td>
<td>System Health</td>
<td>85</td>
</tr>
<tr>
<td>Figure 6-19</td>
<td>Versions</td>
<td>87</td>
</tr>
<tr>
<td>Figure 6-20</td>
<td>Reset</td>
<td>89</td>
</tr>
<tr>
<td>Figure 6-21</td>
<td>SNTP Global Settings</td>
<td>92</td>
</tr>
<tr>
<td>Figure 6-22</td>
<td>SNTP Authentication</td>
<td>94</td>
</tr>
<tr>
<td>Figure 6-23</td>
<td>Add Authentication Key</td>
<td>95</td>
</tr>
<tr>
<td>Figure 6-24</td>
<td>Authentication Key Table</td>
<td>95</td>
</tr>
<tr>
<td>Figure 6-25</td>
<td>SNTP Servers</td>
<td>97</td>
</tr>
<tr>
<td>Figure 6-26</td>
<td>Add SNTP Server</td>
<td>98</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6-27</td>
<td>SNTP Servers Table</td>
<td>99</td>
</tr>
<tr>
<td>6-28</td>
<td>Add SNTP Interface Page</td>
<td>102</td>
</tr>
<tr>
<td>6-29</td>
<td>Global Log Parameters</td>
<td>105</td>
</tr>
<tr>
<td>6-30</td>
<td>RAM Log Table</td>
<td>108</td>
</tr>
<tr>
<td>6-31</td>
<td>Log File Table</td>
<td>112</td>
</tr>
<tr>
<td>6-32</td>
<td>Remote Log Server Settings</td>
<td>115</td>
</tr>
<tr>
<td>6-33</td>
<td>Add a Log Server</td>
<td>116</td>
</tr>
<tr>
<td>6-34</td>
<td>Remote Log Servers Table</td>
<td>117</td>
</tr>
<tr>
<td>6-35</td>
<td>IP Interface Parameters</td>
<td>120</td>
</tr>
<tr>
<td>6-36</td>
<td>Add a Static Interface</td>
<td>121</td>
</tr>
<tr>
<td>6-37</td>
<td>IP Interface Parameter Table</td>
<td>122</td>
</tr>
<tr>
<td>6-38</td>
<td>DHCP IP Interface</td>
<td>124</td>
</tr>
<tr>
<td>6-39</td>
<td>Domain Naming System (DNS)</td>
<td>127</td>
</tr>
<tr>
<td>6-40</td>
<td>Add DNS Server</td>
<td>128</td>
</tr>
<tr>
<td>6-41</td>
<td>DNS Server Table</td>
<td>128</td>
</tr>
<tr>
<td>6-42</td>
<td>Default Domain Name</td>
<td>130</td>
</tr>
<tr>
<td>6-43</td>
<td>Host Name Mapping</td>
<td>132</td>
</tr>
<tr>
<td>6-44</td>
<td>Add Host Name Mapping</td>
<td>133</td>
</tr>
<tr>
<td>6-45</td>
<td>Hosts Name Mapping</td>
<td>133</td>
</tr>
<tr>
<td>6-46</td>
<td>ARP Settings</td>
<td>135</td>
</tr>
<tr>
<td>6-47</td>
<td>Add ARP Entry Page</td>
<td>136</td>
</tr>
<tr>
<td>6-48</td>
<td>ARP Table Page</td>
<td>137</td>
</tr>
<tr>
<td>6-49</td>
<td>Integrated Cable Test for Copper Cables</td>
<td>139</td>
</tr>
<tr>
<td>6-50</td>
<td>Optical Transceiver Diagnostics</td>
<td>142</td>
</tr>
<tr>
<td>6-51</td>
<td>Access Profiles</td>
<td>145</td>
</tr>
<tr>
<td>6-52</td>
<td>Add An Access Profile Page</td>
<td>147</td>
</tr>
<tr>
<td>6-53</td>
<td>Add An Access Profile Rule</td>
<td>148</td>
</tr>
<tr>
<td>6-54</td>
<td>Profile Rules Table Page</td>
<td>149</td>
</tr>
</tbody>
</table>
Figure 6-55. Authentication Profiles . 152
Figure 6-56. Add Authentication Profile Page 153
Figure 6-57. Authentication Profiles . 154
Figure 6-58. Select Authentication . 155
Figure 6-59. Local User Database . 159
Figure 6-60. Add User . 160
Figure 6-61. Local User Table Page . 160
Figure 6-62. Line Password . 162
Figure 6-63. Modify Enable Password . 164
Figure 6-64. TACACS+ Settings . 166
Figure 6-65. Add TACACS+ Host . 167
Figure 6-66. TACACS+ Table . 167
Figure 6-67. RADIUS Settings . 171
Figure 6-68. Add RADIUS Server Page . 173
Figure 6-69. Show all RADIUS Servers . 173
Figure 6-70. SNMP Community . 177
Figure 6-71. Add SNMP Community . 178
Figure 6-72. Community Table . 179
Figure 6-73. SNMP Trap Settings . 182
Figure 6-74. Add Trap Receiver/Manager 183
Figure 6-75. Trap Managers Table . 184
Figure 6-76. File Download From Server 187
Figure 6-77. File Upload to Server . 190
Figure 6-78. Copy Files . 191
Figure 6-79. General Settings . 194
Figure 7-80. Port Based Authentication . 199
Figure 7-81. Port Based Authentication Table 201
Figure 7-82. Multiple Hosts . 203

12 | Contents
Figure 7-83. Multiple Hosts Table .. 205
Figure 7-84. Authenticated Users ... 207
Figure 7-85. Authenticated Users Table 208
Figure 7-86. Port Security ... 210
Figure 7-87. Port Security Table .. 212
Figure 7-88. Port Configuration ... 214
Figure 7-89. Ports Configuration Table 217
Figure 7-90. LAG Configuration ... 221
Figure 7-91. LAG Configuration Table 223
Figure 7-92. Storm Control ... 225
Figure 7-93. Storm Control Settings Table 227
Figure 7-94. Port Mirroring ... 229
Figure 7-95. Static MAC Address ... 231
Figure 7-96. Dynamic Address Table 234
Figure 7-97. GARP Timers .. 237
Figure 7-98. STP Global Settings ... 240
Figure 7-99. STP Port Settings .. 244
Figure 7-100. STP LAG Settings .. 249
Figure 7-101. Rapid Spanning Tree (RSTP) 252
Figure 7-102. VLAN Membership Page 255
Figure 7-103. VLAN Port Settings ... 261
Figure 7-104. VLAN LAG Setting .. 264
Figure 7-105. Protocol Group ... 267
Figure 7-106. Protocol Port .. 269
Figure 7-107. GVRP Parameters ... 271
Figure 7-108. LACP Parameters ... 275
Figure 7-109. LAG Membership ... 278
Figure 7-110. Multicast Global Parameters 280
Table 2-1. RJ-45 Copper based 10/100/1000BaseT LED Indications 32
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2</td>
<td>SFP Port LED Indications</td>
<td>32</td>
</tr>
<tr>
<td>2-3</td>
<td>System LED Indications</td>
<td>33</td>
</tr>
<tr>
<td>3-4</td>
<td>Ports, Connectors and Cables</td>
<td>41</td>
</tr>
<tr>
<td>3-5</td>
<td>RJ-45 Pin Number Allocation for 10/100/1000BaseT Ethernet Port</td>
<td>41</td>
</tr>
<tr>
<td>3-6</td>
<td>Port Default Settings</td>
<td>42</td>
</tr>
<tr>
<td>5-7</td>
<td>Interface Components</td>
<td>66</td>
</tr>
<tr>
<td>5-8</td>
<td>Led Indicators</td>
<td>67</td>
</tr>
<tr>
<td>5-9</td>
<td>Information Buttons</td>
<td>67</td>
</tr>
<tr>
<td>5-10</td>
<td>Device Management Buttons</td>
<td>68</td>
</tr>
<tr>
<td>6-11</td>
<td>Asset CLI Commands</td>
<td>78</td>
</tr>
<tr>
<td>6-12</td>
<td>Clock Setting CLI Commands</td>
<td>84</td>
</tr>
<tr>
<td>6-13</td>
<td>System Health CLI Commands</td>
<td>86</td>
</tr>
<tr>
<td>6-14</td>
<td>Versions CLI Commands</td>
<td>88</td>
</tr>
<tr>
<td>6-15</td>
<td>Reset CLI Command</td>
<td>90</td>
</tr>
<tr>
<td>6-16</td>
<td>SNTP Global Parameters CLI Commands</td>
<td>93</td>
</tr>
<tr>
<td>6-17</td>
<td>SNTP Authentication CLI Commands</td>
<td>96</td>
</tr>
<tr>
<td>6-18</td>
<td>SNTP Server CLI Commands</td>
<td>98</td>
</tr>
<tr>
<td>6-19</td>
<td>SNTP Server CLI Commands</td>
<td>100</td>
</tr>
<tr>
<td>6-20</td>
<td>SNTP Broadcast CLI Commands</td>
<td>102</td>
</tr>
<tr>
<td>6-21</td>
<td>Log Severity Levels</td>
<td>104</td>
</tr>
<tr>
<td>6-22</td>
<td>Global Log Parameters CLI Commands</td>
<td>107</td>
</tr>
<tr>
<td>6-23</td>
<td>RAM Log Table CLI Commands</td>
<td>110</td>
</tr>
<tr>
<td>6-24</td>
<td>Log File Table CLI Commands</td>
<td>113</td>
</tr>
<tr>
<td>6-25</td>
<td>Remote Log Server CLI Commands</td>
<td>118</td>
</tr>
<tr>
<td>6-26</td>
<td>Default Gateway CLI Commands</td>
<td>119</td>
</tr>
<tr>
<td>6-27</td>
<td>IP Interface Parameters CLI Commands</td>
<td>123</td>
</tr>
<tr>
<td>6-28</td>
<td>DHCP IP Interface CLI Commands</td>
<td>126</td>
</tr>
<tr>
<td>Table 6-29.</td>
<td>DNS Server CLI Commands 129</td>
<td></td>
</tr>
<tr>
<td>Table 6-30.</td>
<td>DNS Domain Name CLI Commands 131</td>
<td></td>
</tr>
<tr>
<td>Table 6-31.</td>
<td>Domain Host Name CLI Commands 134</td>
<td></td>
</tr>
<tr>
<td>Table 6-32.</td>
<td>ARP Settings CLI Commands 138</td>
<td></td>
</tr>
<tr>
<td>Table 6-33.</td>
<td>Copper Cable Test CLI Commands 141</td>
<td></td>
</tr>
<tr>
<td>Table 6-34.</td>
<td>Fiber Optic Cable Test CLI Commands 143</td>
<td></td>
</tr>
<tr>
<td>Table 6-35.</td>
<td>Access Profiles CLI Commands 149</td>
<td></td>
</tr>
<tr>
<td>Table 6-36.</td>
<td>Authentication Profile CLI Commands 154</td>
<td></td>
</tr>
<tr>
<td>Table 6-37.</td>
<td>Select Authentication CLI Commands 157</td>
<td></td>
</tr>
<tr>
<td>Table 6-38.</td>
<td>Local User Database CLI Commands 161</td>
<td></td>
</tr>
<tr>
<td>Table 6-39.</td>
<td>Line Password CLI Commands 163</td>
<td></td>
</tr>
<tr>
<td>Table 6-40.</td>
<td>Modify Enable Password CLI Commands 165</td>
<td></td>
</tr>
<tr>
<td>Table 6-41.</td>
<td>TACACS+ CLI Commands .. 168</td>
<td></td>
</tr>
<tr>
<td>Table 6-42.</td>
<td>RADIUS Settings CLI Commands 175</td>
<td></td>
</tr>
<tr>
<td>Table 6-43.</td>
<td>SNMP Community CLI Commands 180</td>
<td></td>
</tr>
<tr>
<td>Table 6-44.</td>
<td>SNMP Trap Settings CLI Commands 184</td>
<td></td>
</tr>
<tr>
<td>Table 6-45.</td>
<td>File Download CLI Commands 189</td>
<td></td>
</tr>
<tr>
<td>Table 6-46.</td>
<td>File Upload CLI Commands 191</td>
<td></td>
</tr>
<tr>
<td>Table 6-47.</td>
<td>Copy Files CLI Commands .. 192</td>
<td></td>
</tr>
<tr>
<td>Table 6-48.</td>
<td>General Settings CLI Commands 194</td>
<td></td>
</tr>
<tr>
<td>Table 7-49.</td>
<td>Port Authentication CLI Commands 202</td>
<td></td>
</tr>
<tr>
<td>Table 7-50.</td>
<td>Multiple Hosts CLI Commands 206</td>
<td></td>
</tr>
<tr>
<td>Table 7-51.</td>
<td>Add User Name CLI Commands 208</td>
<td></td>
</tr>
<tr>
<td>Table 7-52.</td>
<td>Port Security CLI Commands 213</td>
<td></td>
</tr>
<tr>
<td>Table 7-53.</td>
<td>Port Configuration CLI Commands 217</td>
<td></td>
</tr>
<tr>
<td>Table 7-54.</td>
<td>LAG Configuration CLI Commands 223</td>
<td></td>
</tr>
<tr>
<td>Table 7-55.</td>
<td>Storm Control CLI Commands 227</td>
<td></td>
</tr>
<tr>
<td>Table 7-56.</td>
<td>Port Mirroring CLI Commands 230</td>
<td></td>
</tr>
</tbody>
</table>
Table 7-57. Static Address CLI Commands ... 233
Table 7-58. Query and Sort CLI Commands ... 236
Table 7-59. GARP Timer CLI Commands ... 238
Table 7-60. STP Global Parameter CLI Commands 242
Table 7-61. STP Port Settings CLI Commands .. 247
Table 7-62. STP LAG Settings CLI Commands .. 250
Table 7-63. RSTP Settings CLI Command .. 253
Table 7-64. VLAN Membership Group CLI Commands 256
Table 7-65. VLAN Port Membership Table ... 257
Table 7-66. Port-to-VLAN Group Assignments CLI Commands 258
Table 7-67. VLAN Port CLI Commands .. 262
Table 7-68. LAG VLAN Assignments CLI Commands 265
Table 7-69. VLAN Protocol Groups CLI Commands 268
Table 7-70. Protocol Port CLI Commands .. 270
Table 7-71. GVRP Global Parameters CLI Commands 272
Table 7-72. LACP Parameters CLI Commands .. 276
Table 7-73. LAG Membership CLI Commands .. 279
Table 7-74. Multicast Forwarding and Snooping CLI Commands 281
Table 7-75. IGMP Port/LAG Members Table Control Settings 283
Table 7-76. Multicast Service Member CLI Commands 284
Table 7-77. Bridge Multicast Forward All Router/Port Control Settings Table 287
Table 7-78. CLI Commands for Managing LAGs and Ports Attached to 288
Table 7-79. IGMP Snooping CLI Commands ... 291
Table 8-80. Interface Statistics CLI Commands ... 300
Table 8-81. Etherlike Statistics CLI Commands ... 304
Table 8-82. GVRP Statistics CLI Commands ... 307
Introduction

NOTICE: Before proceeding, read the release notes for this product. The release notes can be downloaded from support.dell.com.

This User Guide contains the information needed for installing, configuring and maintaining the PowerConnect device.

PowerConnect 5324

The PowerConnect 5324 has 24 Gigabit Ethernet ports. There are also four SFP fiber ports that are designated as combo port alternatives to Ethernet ports 21-24. The combo ports are single ports with two physical connections. When one is connected the other is disabled.

Figure 1-1 and Figure 1-2 illustrates the PowerConnect 5324 front and back panels.

Features

This section describes the device user-configured features. For a complete list of all updated device features, refer to the latest software version Release Notes.
General Features

Head of Line Blocking
Head of Line (HOL) blocking results in traffic delays and frame loss caused by traffic competing for the same egress port resources. HOL blocking queues packets, and the packets at the head of the queue are forwarded before packets at the end of the queue.

Virtual Cable Testing (VCT)
VCT detects and reports copper link cabling occurrences, such as open cables and cable shorts.

Jumbo Frames Support
Jumbo frames enables transporting the identical data in fewer frames. Ensuring less overhead, lower processing time, and fewer interrupts.
For information on enabling Jumbo Frames, see "Defining General Device Information".

MDI/MDIX Support
The device supports auto-detection between crossed and straight-through cables.
Standard wiring for end stations is Media-Dependent Interface (MDI) and the standard wiring for hubs and switches is known as Media-Dependent Interface with Crossover (MDIX).
For information on configuring MDI/MDI for ports or Link Aggregate Groups (LAGs), see "Defining Port Parameters" or "Defining LAG Parameters".

Flow Control Support (IEEE 802.3X)
Flow control enables lower speed devices to communicate with higher speed devices, by requesting that the higher speed device refrains from sending packets. Transmissions are temporarily halted to prevent buffer overflows.
For information on configuring Flow Control for ports or LAGs, see "Defining Port Parameters" or "Defining LAG Parameters".

Back Pressure Support
On half-duplex links, the receiving port prevents buffer overflows by occupying the link so that it is unavailable for additional traffic.
For information on configuring Back Pressure for ports or LAGs, see "Defining Port Parameters" or "Defining LAG Parameters".
MAC Address Supported Features

MAC Address Capacity Support
The device supports up to eight thousand MAC addresses. The device reserves specific MAC addresses for system use.

Self-Learning MAC Addresses
The device enables automatic MAC address learning from incoming packets. The MAC addresses are stored in the Bridging Table.

Automatic Aging for MAC Addresses
MAC addresses from which no traffic is received for a given period are aged out. This prevents the Bridging Table from overflowing.
For more information on configuring the MAC Address Age Out Time, see "Configuring Address Tables".

Static MAC Entries
User defined static MAC entries are stored in the Bridging Table.
For more information, see "Configuring Address Tables".

VLAN-aware MAC-based Switching
Packets arriving from an unknown source address are sent to the microprocessor, where the source addresses are added to the Hardware Table. Packets addressed to or from this address are more efficiently forwarded using the Hardware Table.

MAC Multicast Support
Multicast service is a limited broadcast service, which allows one-to-many and many-to-many connections for information distribution. Layer 2 Multicast service is where a single frame is addressed to a specific Multicast address, from where copies of the frame are transmitted to the relevant ports.
For more information, see "Multicast Forwarding Support".

Layer 2 Features

IGMP Snooping
Internet Group Membership Protocol (IGMP) Snooping examines IGMP frame contents, when they are forwarded by the device from work stations to an upstream Multicast router. From the frame, the device identifies work stations configured for Multicast sessions, and which Multicast routers are sending Multicast frames.
For more information, see "IGMP Snooping".
Port Mirroring
Port mirroring monitors and mirrors network traffic by forwarding copies of incoming and outgoing packets from a monitored port to a monitoring port. Users specify which target port receives copies of all traffic passing through a specified source port.
For more information, see "Defining Port Mirroring Sessions".

Broadcast Storm Control
Storm Control enables limiting the amount of Multicast and Broadcast frames accepted and forwarded by the device.
When Layer 2 frames are forwarded, Broadcast and Multicast frames are flooded to all ports on the relevant VLAN. This occupies bandwidth, and loads all nodes connected on all ports.
For more information, see "Enabling Storm Control".

VLAN Supported Features

VLAN Support
VLANs are collections of switching ports that comprise a single broadcast domain. Packets are classified as belonging to a VLAN based on either the VLAN tag or based on a combination of the ingress port and packet contents. Packets sharing common attributes can be grouped in the same VLAN.
For more information, see "Configuring VLANs".

Port Based Virtual LANs (VLANs)
Port-based VLANs classify incoming packets to VLANs based on their ingress port.
For more information, see "Defining VLAN Ports Settings".

IEEE802.1V Protocol Based Virtual LANs (VLANs)
VLAN classification rules are defined on data-link layer (Layer 2) protocol identification. Protocol-based VLANs isolate Layer 2 traffic for differing Layer 3 protocols.
For more information, see "Defining VLAN Protocol Groups".

Full 802.1Q VLAN Tagging Compliance
IEEE 802.1Q defines an architecture for virtual bridged LANs, the services provided in VLANs and the protocols and algorithms involved in the provision of these services. An important requirement included in this standard is the ability to mark frames with a desired Class of Service (CoS) tag value (0-7).
GVRP Support

GARP VLAN Registration Protocol (GVRP) provides IEEE 802.1Q-compliant VLAN pruning and dynamic VLAN creation on 802.1Q trunk ports. When GVRP is enabled, the device registers and propagates VLAN membership on all ports that are part of the active underlying "Spanning Tree Protocol Features" topology.

For more information, see "Configuring GVRP".

Spanning Tree Protocol Features

Spanning Tree Protocol (STP)

802.1d Spanning tree is a standard Layer 2 switch requirement that allows bridges to automatically prevent and resolve L2 forwarding loops. Switches exchange configuration messages using specifically formatted frames and selectively enable and disable forwarding on ports.

For more information, see "Configuring the Spanning Tree Protocol".

Fast Link

STP can take up to 30-60 seconds to converge. During this time, STP detects possible loops, allowing time for status changes to propagate and for relevant devices to respond. 30-60 seconds is considered too long of a response time for many applications. The Fast Link option bypasses this delay, and can be used in network topologies where forwarding loops do not occur.

For more information enabling Fast Link for ports and LAGs, see "Defining STP Port Settings" or "Defining STP LAG Settings".

IEEE 802.1w Rapid Spanning Tree

Spanning Tree can take 30-60 seconds for each host to decide whether its ports are actively forwarding traffic. Rapid Spanning Tree (RSTP) detects uses of network topologies to enable faster convergence, without creating forwarding loops.

For more information, see "Configuring Rapid Spanning Tree".

Link Aggregation

For more information, see "Aggregating Ports".

Link Aggregation

Up to eight Aggregated Links may be defined, each with up to eight member ports, to form a single Link Aggregated Group (LAG). This enables:

- Fault tolerance protection from physical link disruption
- Higher bandwidth connections
- Improved bandwidth granularity
- High bandwidth server connectivity
LAG is composed of ports with the same speed, set to full-duplex operation. For more information, see "Defining LAG Membership".

Link Aggregation and LACP

LACP uses peer exchanges across links to determine, on an ongoing basis, the aggregation capability of various links, and continuously provides the maximum level of aggregation capability achievable between a given pair of systems. LACP automatically determines, configures, binds and monitors the port binding to aggregators within the system. For more information, see "Defining LACP Parameters".

Layer 3 Features

Address Resolution Protocol (ARP)

ARP is a TCP/IP protocol that converts IP addresses into physical addresses. ARP automatically determines Device Next-Hop MAC addresses of systems, including directly attached end systems. Users can override and supplement this by defining additional ARP Table entries. For more information, see "Mapping Domain Host".

TCP

Transport Control Protocol (TCP) connections are defined between 2 ports by an initial synchronization exchange. TCP ports are identified by an IP address and a 16-bit port number. Octets streams are divided into TCP packets, each carrying a sequence number.

BootP and DHCP Clients

Dynamic Host Configuration Protocol (DHCP) enables additional setup parameters to be received from a network server upon system startup. DHCP service is an on-going process. DHCP is an extension to BootP. For more information on DHCP, see "Defining DHCP IP Interface Parameters".

Quality of Service Features

Class Of Service 802.1p Support

The IEEE 802.1p signaling technique is an OSI Layer 2 standard for marking and prioritizing network traffic at the data link/MAC sub-layer. 802.1p traffic is classified and sent to the destination. No bandwidth reservations or limits are established or enforced. 802.1p is a spin-off of the 802.1Q (VLANs) standard. 802.1p establishes eight levels of priority, similar to the IP Precedence IP Header bit-field. For more information, see "Configuring Quality of Service".
Device Management Features

SNMP Alarms and Trap Logs
The system logs events with severity codes and timestamps. Events are sent as Simple Network Management Protocol (SNMP) traps to a Trap Recipient List.
For more information on SNMP Alarms and Traps, see "Defining SNMP Parameters".

SNMP Version 1 and Version 2
Simple Network Management Protocol (SNMP) over the UDP/IP protocol. To control access to the system, a list of community entries is defined, each of which consists of a community string and its access privileges. There are 3 levels of SNMP security; read-only, read-write, and super. Only a super user can access the community table.

Web Based Management
With web based management, the system can be managed from any web browser. The system contains an Embedded Web Server (EWS), which serves HTML pages, through which the system can be monitored and configured. The system internally converts web-based input into configuration commands, MIB variable settings and other management-related settings.

Configuration File Download and Upload
PowerConnect device configuration is stored in a configuration file. The Configuration file includes both system wide and port specific device configuration. The system can display configuration files in the form of a collection of CLI commands, which are stored and manipulated as text files.
For more information, see "Managing Files".

Trivial File Transfer Protocol (TFTP)
The device supports boot image, software and configuration upload/download via TFTP.

Remote Monitoring
Remote Monitoring (RMON) is an extension to SNMP, which provides comprehensive network traffic monitoring capabilities (as opposed to SNMP which allows network device management and monitoring). RMON is a standard MIB that defines current and historical MAC-layer statistics and control objects, allowing real-time information to be captured across the entire network.
For more information, see "Viewing RMON Statistics".

Command Line Interface
Command Line Interface (CLI) syntax and semantics conform as much as possible to common industry practice. CLI is composed of mandatory and optional elements. The CLI interpreter provides command and keyword completion to assist user and shorten typing.
Syslog

Syslog is a protocol that allows event notifications to be sent to a set of remote servers, where they can be stored, examined and acted upon. Multiple mechanisms are implemented to send notification of significant events in real time, and keep a record of these events for after-the-fact usage.

For more information on Syslog, see "Managing Logs".

SNTP

The Simple Network Time Protocol (SNTP) assures accurate network device clock time synchronization up-to the millisecond. Time synchronization is performed by a network SNTP server. Time sources are established by Stratums. Stratums define the distance from the reference clock. The higher the stratum (where zero is the highest), the more accurate the clock.

For more information, see "Configuring SNTP Settings".

Traceroute

Traceroute enables discovering IP routes that packets were forwarded along during the forwarding process. The CLI Traceroute utility can be executed from either the user-exec or privileged modes.

Security Features

SSL

Secure Socket Layer (SSL) is an application-level protocol that enables secure transactions of data through privacy, authentication, and data integrity. It relies upon certificates and public and private keys.

Port Based Authentication (802.1x)

Port based authentication enables authenticating system users on a per-port basis via an external server. Only authenticated and approved system users can transmit and receive data. Ports are authenticated via the Remote Authentication Dial In User Service (RADIUS) server using the Extensible Authentication Protocol (EAP).

For more information, see "Configuring Port Based Authentication".

Locked Port Support

Locked Port increases network security by limiting access on a specific port only to users with specific MAC addresses. These addresses are either manually defined or learned on that port. When a frame is seen on a locked port, and the frame source MAC address is not tied to that port, the protection mechanism is invoked.

For more information, see "Configuring Port Security".
RADIUS Client

RADIUS is a client/server-based protocol. A RADIUS server maintains a user database, which contains per-user authentication information, such as user name, password and accounting information.

For more information, see "Configuring RADIUS Global Parameters".

SSH

Secure Shell (SSH) is a protocol that provides a secure, remote connection to a device. SSH version 1 is currently available. The SSH server feature enables an SSH client to establish a secure, encrypted connection with a device. This connection provides functionality that is similar to an inbound telnet connection. SSH uses RSA Public Key cryptography for device connections and authentication.

TACACS+

TACACS+ provides centralized security for validation of users accessing the device. TACACS+ provides a centralized user management system, while still retaining consistency with RADIUS and other authentication processes.

For more information, see "Defining TACACS+ Settings".

Additional CLI Documentation

The CLI Reference Guide, which is available on the Documentation CD, provides information about the CLI commands used to configure the device. The document provides information including the CLI description, syntax, default values, guidelines, and examples.
Hardware Description

Device Port Configurations

PowerConnect 5324 Front Panel Port Description

The PowerConnect 5324 device is configured with the following ports:

- **24 Copper ports** — RJ-45 ports designated as 10/100/1000 BaseT Gigabit Ethernet ports
- **4 Fiber ports** — Designated as Gigabit ports
- **Terminal port** — RS-232 console based port

The following figure illustrates the PowerConnect 5324 front panel.

Figure 2-3. PowerConnect 5324 Front Panel

The front panel contains ports1-24, which are copper based RJ-45 ports, designated as 10/100/1000 Mbps and support both Half and Full Duplex modes. There are four SFP fiber ports which are designated as Combo ports 21-24. A Combo port is a single logical port with two physical connections. Only one physical connection can be active at a time, so either the copper ports or the equivalent fiber ports 21-24 can be active, but they cannot both be active simultaneously. The upper row of ports are marked by odd numbers 1-23 and the lower row of ports are marked with even numbers 2-24.

On the front panel is an RS-232 Console port, all the device LEDs and a Reset Button which is used to manually reset the device.
The device automatically detects whether the cable connected to an RJ-45 port is crossed or straight through, and functions either way.

PowerConnect Back Panel Port Description

The device back panel contains connectors for power, as illustrated in the Figure 2-4.

Figure 2-4. Device Back Panel

![Device Back Panel Diagram](image)

On the device back panel are two power supply connectors. For general use there is an AC Power Supply connector which is connectable to either 110V or 220V power supplies.

The DC Power Supply connector is to connect a Redundant Power Supply (RPS) to be activated automatically in the event of an AC power supply outage.

Device Ports

SFP Ports

The Small Form Factor Plugable (SFP) port is a hot swappable optical modular transceiver that offers high speed and compactness, which is designated as 1000Base-SX or LX.

RS-232 Console Port

One DB-9 connector for a serial terminal connection which is used for debugging, software download, etc. The default baud rate is 9600 bps. The baud rate can be configured from 2400 bps up to 38400 bps.

Figure 2-5. Console Port

![Console Port Diagram](image)
Combo Ports

A combo port is a single logical port with two physical connections:
- A RJ-45 connection for Twisted Pair copper cabling
- A SFP connection for various fiber-based modules

Only one of the two physical connections of a combo port may be used at any one time. Port features and available port controls are determined by the physical connection used.

The system automatically detects the media used on a combo port, and utilizes this information in all operations and control interfaces.

If both RJ-45 and SFP are present, and a connector is inserted in the SFP port, the SFP port is active, unless the copper connector of the Base-T port of the same number is inserted and has a link.

The system can switch from the RJ-45 to the SFP (or vice-versa) without a system reboot or reset.

Physical Dimensions

The device has the following physical dimensions:

- Height — 44 mm (1.73 inch)
- Width — 440 mm (17.32 inch)
- Depth — 255 mm (10.03 inch)

LED Definitions

The front panel contains light emitting diodes (LED) that indicate the status of links, power supplies, fans, and system diagnostics.

Port LEDs

10/100/1000 Base-T Port LEDs

Each 10/100/1000 Base-T port has two LEDs. Speed/link/activity is indicated on the left LED and the duplex mode is indicated on the right LED.

Figure 2-6. RJ-45 Copper based 10/100/1000 BaseT LEDs
The RJ-45 LED indications are described in the following table:

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left LED</td>
<td>Green Static</td>
<td>The port is linked at 1000 Mbps.</td>
</tr>
<tr>
<td></td>
<td>Green Flashing</td>
<td>The port is transmitting or receiving data at 1000 Mbps.</td>
</tr>
<tr>
<td></td>
<td>Orange Static</td>
<td>The port is linked at either 10 or 100 Mbps.</td>
</tr>
<tr>
<td></td>
<td>Orange Flashing</td>
<td>The port is transmitting or receiving data at either 10 or 100 Mbps.</td>
</tr>
<tr>
<td>Right LED</td>
<td>Green</td>
<td>The port is currently transmitting in Full Duplex mode.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>The port is operating in Half Duplex mode.</td>
</tr>
</tbody>
</table>

Table 2-1. RJ-45 Copper based 10/100/1000BaseT LED Indications

SFP LEDs
The SFP ports each have one LED marked as LNK.

Figure 2-7. SFP Port LED

![SFP Port LED](image)

The SFP port LED indications are described in the following table:

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFP</td>
<td>Green Static</td>
<td>The port is currently up.</td>
</tr>
<tr>
<td></td>
<td>Green Flashing</td>
<td>The port is currently transmitting or receiving data.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>The port is currently down.</td>
</tr>
</tbody>
</table>

When the SFP port is connected, the Duplex LED on the corresponding copper Combo port is Green.

System LEDs
The system LEDs, located on the left side of the front panel, provide information about the power supplies, fans, thermal conditions, and diagnostics. Figure 2-8 illustrates the system LEDs.
The following table describes the system LED indications.

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics (DIAG)</td>
<td>Green Flashing</td>
<td>The system is currently running a diagnostic test.</td>
</tr>
<tr>
<td></td>
<td>Green Static</td>
<td>The system passed the diagnostic test.</td>
</tr>
<tr>
<td></td>
<td>Red Static</td>
<td>The system failed the diagnostic test.</td>
</tr>
<tr>
<td>Fan (FAN)</td>
<td>Green Static</td>
<td>The device fans are operating normally.</td>
</tr>
<tr>
<td></td>
<td>Red Static</td>
<td>One or more fans are not operating.</td>
</tr>
<tr>
<td>Redundant Power Supply (RPS)</td>
<td>Green Static</td>
<td>The redundant power supply is currently operating.</td>
</tr>
<tr>
<td></td>
<td>Red Static</td>
<td>The redundant power supply is not operating.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>The redundant power supply is not currently operating.</td>
</tr>
<tr>
<td>Main Power Supply (PWR)</td>
<td>Green Static</td>
<td>The main power supply is currently operating normally.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>The main power supply is not currently operating.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>The main power supply has failed</td>
</tr>
</tbody>
</table>

Hardware Components

Power Supplies

The device has an internal power supply unit (AC unit) and a connector to connect the device to an external power supply unit (DC unit). The external unit provides redundancy and is called an RPS unit. To power up the device, only one power supply is required. Operation with both power supply units is regulated through load sharing.

Load sharing is where the device power requirements are divided between the two power supplies. If one power supply has an outage, the second power supply automatically continues providing power to the whole device.
Power supply LEDs indicate the power supply status. For more information on LEDs, see "LED Definitions".

AC Power Supply Unit

The AC power supply unit converts standard 220/110V AC 50/60 Hz to 5V DC at 5A, 12V DC at 3A. The unit automatically senses the available voltage rating (110 or 220V) and no setting is required.

The AC power supply unit uses a standard AC220/110V connector. LED indicator is on the front panel and indicates whether the AC unit is connected.

DC Power Supply Unit

An external DC power supply unit is used as a redundant power supply unit. Operation is possible with power supplied from this unit only. RPS600 connector type is used. No configuration is required. LED indicator is on the front panel and indicates whether DC unit is connected.

When the device is connected to a different power source, the probability of failure in the event of a power outage decreases.

Reset Button

The reset button, located on the front panel, manually resets the device.

Ventilation System

The device uses a fan system for cooling. Fan operational status can be verified by observing the LEDs that indicate if there is a faulty fan. For information, see "LED Definitions".
Installing the PowerConnect Device

This section contains information about device unpacking, location, installation, and cable connections.

Installation Precautions

⚠️ CAUTION Before performing any of the following procedures, read and follow the safety instructions located in the System Information Guide included in the Dell Documentation.

⚠️ CAUTION Observe the following points before performing the procedures in this section:

- Ensure that the rack or cabinet housing the device is adequately secured to prevent it from becoming unstable and/or falling over.
- Ensure that the power source circuits are properly grounded.
- Observe and follow the service markings. Do not service any device except as explained in the system documentation. Opening or removing covers marked with a triangular symbol with a lighting bolt may cause electrical shock. These components are to be serviced by trained service technicians only.
- Ensure that the power cable, extension cable, and/or plug is not damaged.
- Ensure that the device is not exposed to water.
- Ensure that the device is not exposed to radiators and/or heat sources.
- Ensure that the cooling vents are not blocked.
- Do not push foreign objects into the device, as it may cause a fire or electric shock.
- Use the device only with approved equipment.
- Allow the device to cool before removing covers or touching internal equipment.
- Ensure that the device does not overload the power circuits, wiring, and over-current protection. To determine the possibility of overloading the supply circuits, add together the ampere ratings of all switches installed on the same circuit as the device. Compare this total with the rating limit for the circuit.
- Do not install the device in an environment where the operating ambient temperature might exceed 40°C (122°F).
- Ensure that the airflow around the front, sides, and back of the device is not restricted.
Site Requirements

The device can be mounted in a standard 19-inch rack or placed on a tabletop. Before installing the device, verify that the location chosen for installation meets the site requirements.

- **General** — Ensure that the power supply is correctly installed.
- **Power** — The device is installed within 1.5 m (5 feet) of a grounded, easily accessible outlet 220/110 VAC, 50/60 Hz.
- **Clearance** — There is adequate frontal clearance for operator access. Allow clearance for cabling, power connections and ventilation.
- **Cabling** — Cabling is routed to avoid sources of electrical noise such as radio transmitters, broadcast amplifiers, power lines and fluorescent lighting fixtures.
- **Ambient Requirements** — The ambient unit operating temperature range is 0 to 40ºC (32 to 104ºF) at a relative humidity of 10% to 90%, non-condensing. Verify that water or moisture cannot enter the unit casing.

Unpacking

Package Contents

While unpacking the device, ensure that the following items are included:

- The device
- An AC power cable
- RS-232 crossover cable
- Self-adhesive rubber pads
- Rack mount kits for rack installation
- Documentation CD

Unpacking the Device

To unpack the device:

1. Place the container on a clean, flat surface and cut all straps securing the container.
2. Open the container or remove the container top.
3. Carefully remove the device from the container and place it on a secure and clean surface.
4. Remove all packing material.

NOTE: Before unpacking the device, inspect the package and report any evidence of damage immediately.

NOTE: An ESD strap is not provided, however it is recommended to wear one for the following procedure.
Inspect the device for damage. Report any damage immediately.

Mounting the Device

Overview
The power connectors for the device are positioned on the back panel. Connecting a DC Redundant Power Supply (UPS) is optional, but is recommended. The UPS DC connector is located on the back panel of the device.

Mounting the System

Device Rack Installation

⚠️ CAUTION: Disconnect all cables from the unit before mounting the device in a rack or cabinet.

⚠️ CAUTION: When mounting multiple devices into a rack, mount the devices from the bottom up.

1 Place the supplied rack-mounting bracket on one side of the device ensuring the mounting holes on the device line up to the mounting holes on the rack mounting bracket. Figure 3-9 illustrates where to mount the brackets.

Figure 3-9. Connection Rack Mounting Brackets
2 Insert the supplied screws into the rack mounting holes and tighten with a screwdriver.
3 Repeat the process for the rack-mounting bracket on the other side of the device.
4 Insert the unit into the 19-inch rack ensuring the rack-mounting holes on the device line up to the mounting hole on the rack.
5 Secure the unit to the rack with the rack screws (not provided). Fasten the lower pair of screws before the upper pair of screws. This ensures that the weight of the unit is evenly distributed during installation. Ensure that the ventilation holes are not obstructed.

Installing the Device without a Rack
The device must be installed on a flat surface if it is not installed on a rack. The surface must be able to support the weight of the device and the device cables.
1 Install rubber feet provided with the device.
2 Set the device on a flat surface, while leaving 2 inches (5.08cm) on each side and 5 inches (12.7cm) at the back.
3 Ensure that the device has proper ventilation.

Connecting the Device
To configure the device, the device must be connected to a terminal.

Connecting a Device to a Terminal
The device provides a Console port, that enables a connection to a terminal desktop system running terminal emulation software for monitoring and configuring the device. The Console port connector is a male DB-9 connector, implemented as a data terminal equipment (DTE) connector.

To use the Console port, the following is required:
- VT100 compatible terminal or a desktop or portable system with a serial port and running VT100 terminal emulation software.
- A RS-232 crossover cable with a female DB-9 connector for the Console port and the appropriate connector for the terminal.

To connect a terminal to the device Console port, perform the following:
1 Connect an RS-232 crossover cable to the terminal running VT100 terminal emulation software.
2 Ensure that the terminal emulation software is set as follows:
 a Select the appropriate serial port (serial port 1 or serial port 2) to connect to the console.
 b Set the data rate to 9600 baud.
 c Set the data format to 8 data bits, 1 stop bit, and no parity.
 d Set flow control to none.
e Under Properties, select VT100 for Emulation mode.

f Select Terminal keys for Function, Arrow, and Ctrl keys. Ensure that the setting is for Terminal keys (not Windows keys).

⚠️ **NOTICE:** When using HyperTerminal with Microsoft® Windows 2000, ensure that Windows® 2000 Service Pack 2 or later is installed. With Windows 2000 Service Pack 2, the arrow keys function properly in HyperTerminal's VT100 emulation. Go to www.microsoft.com for information on Windows 2000 service packs.

3 Connect the female connector of the RS-232 crossover cable directly to the device Console port, and tighten the captive retaining screws.

The device Console port is located on the front panel.

Figure 3-10. Connecting to PowerConnect 5324 Console Port

Connecting a Device to a Power Supply

1 Using a 5-foot (1.5 m) standard power cable with safety ground connected, connect the power cable to the AC connector located on the back panel.

2 Connect the power cable to a grounded AC outlet.
Confirm that the device is connected and operating correctly by examining the LEDs on the front panel.

Port Connections, Cables, and Pinout Information

This section explains the device’s physical interfaces, and provides information about port connections. Connector types, ports and cables are summarized in Ports, Connectors, and Cables. Copper Cable and Optical Transceiver Diagnostics are supported.

RJ-45 Connections for 10/100/1000BaseT Ports

The 10/100/1000BaseT ports are copper twisted-pair ports.

To establish a link for the twisted-pair ports, Tx pair on one cable end must be connected to the Rx pair on the other cable end, and vice versa. If the cabling is done such that Tx on one end is wired to Tx on the other end, and Rx is wired to Rx, a link is not established.

When selecting cables to connect the device ports to their networking peers, straight through cables must be used to connect the device to a station, and crossover cables must be used to connect one transmission device (switch or hub) to another. Both the straight through and crossover cables are category 5.

After a port is connected, its LINK indication LED is lit.
Table 3-4. Ports, Connectors and Cables

<table>
<thead>
<tr>
<th>Connector</th>
<th>Port/Interface</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJ-45</td>
<td>10/100/1000BaseT Port</td>
<td>Cat.5</td>
</tr>
</tbody>
</table>

The RJ-45 pin number allocation for the 10/100/1000BaseT ports is listed in the table following.

Table 3-5. RJ-45 Pin Number Allocation for 10/100/1000BaseT Ethernet Port

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TxRx 1+</td>
</tr>
<tr>
<td>2</td>
<td>TxRx 1-</td>
</tr>
<tr>
<td>3</td>
<td>TxRx 2+</td>
</tr>
<tr>
<td>4</td>
<td>TxRx 2-</td>
</tr>
<tr>
<td>5</td>
<td>TxRx 3+</td>
</tr>
<tr>
<td>6</td>
<td>TxRx 3-</td>
</tr>
<tr>
<td>7</td>
<td>TxRx 4+</td>
</tr>
<tr>
<td>8</td>
<td>TxRx 4-</td>
</tr>
</tbody>
</table>

Port Default Settings

The general information for configuring the device ports includes the short description of the auto-negotiation mechanism and the default settings for switching ports.

Auto-Negotiation

Auto-negotiation enables automatic detection of speed, duplex mode and flow control on switching 10/100/1000BaseT ports. Auto-negotiation is enabled per port by default.

Auto-negotiation is a mechanism established between two link partners to enable a port to advertise its transmission rate, duplex mode and flow control (the flow control by default is disabled) abilities to its partner. The ports then both operate at the highest common denominator between them.

If connecting a NIC that does not support auto-negotiation or is not set to auto-negotiation, both the device switching port and the NIC must be manually set to the same speed and duplex mode.

If the station on the other side of the link attempts to auto-negotiate with a device 10/100/1000BaseT port that is configured to full duplex, the auto-negotiation results in the station attempting to operate in half duplex.
MDI/MDIX

The device supports auto-detection of straight through and crossed cables on all switching 10/100/1000BaseT ports. The feature is part of the Auto-negotiation and is enabled when Auto-negotiation is enabled.

When the MDI/MDIX (Media Dependent Interface with Crossover) is enabled, the automatic correction of errors in cable selection is possible, making the distinction between a straight through cable and a crossover cable irrelevant. (The standard wiring for end stations is known as MDI (Media Dependent Interface), and the standard wiring for hubs and switches is known as MDIX.)

Flow Control

The device supports 802.3x Flow Control for ports configured with the Full Duplex mode. By default, this feature is disabled. It can be enabled per port. The flow control mechanism allows the receiving side to signal to the transmitting side that transmission must temporarily be halted to prevent buffer overflow.

Back Pressure

The device supports back pressure for ports configured to half duplex mode. By default, this feature is disabled. It can be enabled per port. The back pressure mechanism prevents the transmitting side from transmitting additional traffic temporarily. The receiving side may occupy a link so it becomes unavailable for additional traffic.

Switching Port Default Settings

The following table gives the port default settings.

Table 3-6. Port Default Settings

<table>
<thead>
<tr>
<th>Function</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port speed and mode</td>
<td>10/100/1000BaseT copper: auto-negotiation 100 full duplex</td>
</tr>
<tr>
<td>Port forwarding state</td>
<td>Enabled</td>
</tr>
<tr>
<td>Port tagging</td>
<td>No tagging</td>
</tr>
<tr>
<td>Flow Control</td>
<td>Off (disabled on ingress)</td>
</tr>
<tr>
<td>Back Pressure</td>
<td>Off (disabled on ingress)</td>
</tr>
</tbody>
</table>
Starting and Configuring the Device

After completing all external connections, connect a terminal to the device to configure the device and for other procedures. For initial configuration, the standard device configuration is performed.

NOTE: Before proceeding, read the release notes for this product. The release notes can be downloaded from www.support.dell.com.

Figure 4-12. Installation and Configuration Flow

Configure the Terminal

To configure the device, the terminal must be running terminal emulation software.
Ensure that the terminal emulation software is set as follows:

1. Select the appropriate serial port (serial port 1 or serial port 2) to connect to the console.
2. Set the data rate to 9600 baud.
3. Set the data format to 8 data bits, 1 stop bit, and no parity.
4. Set flow control to none.
5. Under Properties, select VT100 for Emulation mode.
6. Select Terminal keys for Function, Arrow, and Ctrl keys. Ensure that the setting is for Terminal keys (not Windows keys).

NOTICE: When using HyperTerminal with Microsoft® Windows 2000, ensure that Windows® 2000 Service Pack 2 or later is installed. With Windows 2000 Service Pack 2, the arrow keys function properly in HyperTerminal’s VT100 emulation. Go to www.microsoft.com for information on Windows 2000 service packs.

Booting the Device

NOTE: The assumed bootup information is as follows:
- The device is delivered with a default configuration.
- The device is not configured with a default user name and password.

To boot the device, perform the following:

1. Ensure that the device Serial port is connected to an ASCII terminal, or the serial connector of a desktop system running terminal emulation software.
2. Locate an AC power receptacle.
3. Switch off the AC power receptacle.
4. Connect the device to the AC receptacle. See "Connecting a Device to a Power Supply".
5. Switch on the AC power receptacle.

When the power is turned on with the local terminal already connected, the device goes through Power On Self Test (POST). POST runs every time the device is initialized and checks hardware components to determine if the device is fully operational before completely booting. If a critical problem is detected, the program flow stops. If POST completes successfully, a valid executable image is loaded into RAM. POST messages are displayed on the terminal and indicate test success or failure.

1. Ensure that the ASCII cable is connected to the terminal, and that parameters on SW emulation are configured correctly.
2. Connect the power supply to the device.
3. Power on the device.
4. As the device boots, the bootup test first counts the device memory availability and then continues to boot. The following screen is an example of the displayed POST:
------- Performing the Power-On Self Test (POST) -------
UART Channel Loopback Test..........................PASS
Testing the System SDRAM..............................PASS
Boot1 Checksum Test....................................PASS
Boot2 Checksum Test....................................PASS
Flash Image Validation Test............................PASS

BOOT Software Version 1.0.0.20 Built 22-Jan-2004 15:09:28
Processor: FireFox 88E6218 ARM946E-S, 64 MByte SDRAM.
I-Cache 8 KB. D-Cache 8 KB. Cache Enabled.

Autoboot in 2 seconds - press RETURN or Esc. to abort and enter prom.
Preparing to decompress...

The boot process runs approximately 90 seconds.
The auto-boot message displayed at the end of POST (see the last lines) indicates that no problems were encountered during boot.
During boot the Startup menu can be used to run special procedures. To enter the Startup menu, press <Esc> or <Enter> within the first two seconds after the auto-boot message is displayed.
If the system boot process is not interrupted by pressing <Esc> or <Enter>, the process continues decompressing and loading the code into RAM. The code starts running from RAM and the list of numbered system ports and their states (up or down) are displayed.

The following screen is an example configuration. Items such as addresses, versions, and dates may differ for each device.
Decompressing SW from image-2
78c000
OK
Running from RAM...

**
*** Running SW Ver. 1.0.0.15 Date 03-Mar-2004 Time 10:41:14 ***
**
HW version is 00.01.07
Base Mac address is: 00:00:07:77:77:77
Dram size is : 64M bytes
Dram first block size is : 40960K bytes
Dram first PTR is : 0x180000
Flash size is: 16M
Device configuration:
Prestera based system
Slot 1 - Neyland24 HW Rev. 0.1
Tapi Version: v1.2.9
Core Version: v1.2.9
01-Jan-2000 01:01:32 %INIT-I-InitCompleted: Initialization task is completed

console> 01-Jan-2000 01:01:35 %LINK-W-Down: g1
01-Jan-2000 01:01:35 %LINK-W-Down: g2
01-Jan-2000 01:01:35 %LINK-W-Down: g3
01-Jan-2000 01:01:35 %LINK-W-Down: g4
01-Jan-2000 01:01:35 %LINK-W-Down: g5
01-Jan-2000 01:01:35 %LINK-W-Down: g6
01-Jan-2000 01:01:35 %LINK-W-Down: g7
01-Jan-2000 01:01:35 %LINK-W-Down: g8
01-Jan-2000 01:01:35 %LINK-W-Down: g9
01-Jan-2000 01:01:35 %LINK-W-Down: g10
01-Jan-2000 01:01:35 %LINK-W-Down: g11
01-Jan-2000 01:01:35 %LINK-W-Down: g12
01-Jan-2000 01:01:35 %LINK-W-Down: g13
01-Jan-2000 01:01:36 %LINK-W-Down: g14
01-Jan-2000 01:01:36 %LINK-W-Down: g15
01-Jan-2000 01:01:36 %LINK-W-Down: g16
01-Jan-2000 01:01:36 %LINK-W-Down: g17
After the device boots successfully, a system prompt is displayed (console>) which is used to configure the device. However, before configuring the device, ensure that the latest software version is installed on the device. If it is not the latest version, download and install the latest version. For more information on downloading the latest version, see the "Software Download".
Configuration Overview

Before assigning a static IP address to the device, obtain the following information:
- A specific IP address that has been allocated to the device in order for it to be configured.
- Default route.
- Network mask for the network.

There are two configuration types:
- **Initial Configuration** — Consists of configuration functions with basic security considerations.
- **Advanced Configuration** — Consists of dynamic IP configuration and more advanced security considerations.

NOTE: After making any configuration changes, the new configuration must be saved before rebooting. To save the configuration, enter:

```bash
console# copy running-config startup-config
```

Initial Configuration

NOTE: Before proceeding, read the release notes for this product. The release notes can be downloaded from Dell support website at support.dell.com.

NOTE: The initial simple configuration uses the following assumptions:
- The PowerConnect device was never configured before, and is in the same state as when it was received.
- The PowerConnect device booted successfully.
- The Serial connection is established and the console prompt is displayed on the screen of a VT100 terminal device. (Press the <Enter> key several times to verify that the prompt displays correctly.)
- The device is not configured with a default user name and password.

The initial device configuration is through the Serial port. After the initial configuration, the device can then be managed either from the already connected Serial port or remotely through an interface defined during the initial configuration.

The initial configuration consists of the following:
- Setting the user name 'admin', password as 'dell' with the highest privilege level of 15.
- Configuring the static IP address and the default gateway.
- Configuring the SNMP read/write community string.
- Assigning the IP address allocated by the DHCP server.

Before applying the initial configuration procedure to the PowerConnect device, the following information must be obtained from the network administrator:
- The IP address to be assigned to a VLAN through which the device is managed.
The IP subnet mask for the network.
- The default gateway IP address.
- The SNMP community.

Static IP Address and Subnet Mask

An IP address can be configured on any interface, including a VLAN, a LAG, and a physical port. After entering the configuration command, it is recommended to check if a port was configured with the IP address by entering the `show ip interface` command.

Important: If an IP address is configured on a LAG or physical port (ex. g10), that interface is removed from VLAN 1.

Static Route Configuration

To manage the device from a remote network a static route must be configured, which is an IP address to where packets are sent when no entries are found in the device tables. The configured IP address must belong to the same subnet as one of the device IP interfaces.

To configure a static route, enter the command at the system prompt as shown in the following configuration example where 100.1.1.1 (mask 24) is the specific management station, and 100.1.1.10 is the static route which acts as the default gateway.

Assigning Static IP Addresses on an Inband Interface

NOTE: This example uses the following assumptions:
- The IP address to be assigned to the PowerConnect VLAN interface is 192.168.1.123
- The IP subnet mask for the network is 255.255.255.0
- The IP address of the default route is 192.168.1.1
- The read/write SNMP community string is ‘private’

```
console> enable
console# configure
console(config)# username admin password dell level 15
console(config)# interface VLAN 1
console (config-if) # ip address 192.168.1.123 /24
console (config-if) # exit
console (config) # ip default-gateway 192.168.1.1
console (config) # snmp-server community private rw
console(config)# exit
```
Verifying the IP and Default Gateway Addresses

Ensure that the IP address and the default gateway are properly assigned by executing the following command and examining its output:

Command
console# show ip interface vlan 1

Output

<table>
<thead>
<tr>
<th>Gateway IP Address</th>
<th>Activity status</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1</td>
<td>Active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP address</th>
<th>Interface</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.123 /24</td>
<td>VLAN 1</td>
<td>Static</td>
</tr>
</tbody>
</table>

NOTE: It is recommended that the most recent revision of the user documentation is downloaded from the Dell support website at support.dell.com.

User Name

To manage the device remotely, for example through SSH, Telnet, or the Web interface, a user name must be configured. To gain complete administrative control over the device the highest privilege (15) must be specified.

NOTE: Only the administrator (super-user) with the highest privilege level (15) is allowed to manage the device through the Web browser interface.

For more information about the privilege level, see the "CLI Reference Guide".

The configured user name is entered as a login name for remote management sessions. To configure user name and privilege level, enter the command at the system prompt as shown in the configuration example:

```
console> enable
console# configure
console(config)# username admin password abc level 15
```
SNMP Community Strings

Simple Network Management Protocol (SNMP) provides a method for managing network devices. Devices supporting SNMP run a local software (agent). The SNMP agents maintain a list of variables, used to manage the device. The variables are defined in the Management Information Base (MIB). The MIB presents the variables controlled by the agent. The SNMP agent defines the MIB specification format, as well as the format used to access the information over the network. Access rights to the SNMP agents are controlled by access strings and SNMP community strings.

The device is SNMP-compliant and contains an SNMP agent that supports a set of standard and private MIB variables. Developers of management stations require the exact MIB tree structure and receive the complete private MIBs information before being able to manage the MIBs.

All parameters are manageable from any SNMP management platform, except the SNMP management station IP address, community name, and access rights. The SNMP management access to the device is disabled if no community strings exist.

NOTE: The device is delivered with no community strings configured. SNMPv1 and SNMPv2 are supported on the device. This section describes SNMPv1/v2 configuration parameters.

The following screen displays the default device configuration:

```
Console# show snmp

<table>
<thead>
<tr>
<th>Community-String</th>
<th>Community-Access</th>
<th>IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traps are enabled.
Authentication trap is enabled.

<table>
<thead>
<tr>
<th>Trap-Rec-Address</th>
<th>Trap-Rec-Community</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Contact:
System Location:
```

During the initial configuration procedure the community-string, community-access, and IP address can be set through the local terminal.

The SNMP configuration options are:

- Community string.
- **Read Only** — Indicates that the community members can view configuration information, but cannot change any information.
- **Read/Write** — Indicates that the community members can view and modify configuration information.
- **Super** — Indicates that the community members have administration access.

- Configurable IP address. If IP address is not configured, all community members with the same community name are granted the same access rights.

Common practice is to use two community strings for the device — one (public community) with read-only access and the other (private community) with read-write access. The public string allows authorized management stations to retrieve MIB objects, while the private string allows authorized management stations to retrieve and modify MIB objects.

During initial configuration, it is recommended to configure the device according to the network administration requirements, in accordance with using an SNMP-based management station.

Configuring SNMP

To configure SNMP station IP address and community string(s) for the general device router tables, perform the following steps.

1. At the console prompt, enter the command `Enable`. The prompt is displayed as `#`.
2. Enter the command `configure` and press `<Enter>`.
3. In the configuration mode, enter the SNMP configuration command with the parameters including community name (private), community access right (read and write) and IP address, as shown in the example below:

```
console# configure
config(config)# snmp-server community private rw 11.1.1.2
```

Viewing SNMP Community Tables

To view SNMP station IP address and community tables:

1. At the console prompt, enter the command `exit`. The prompt is displayed as `#`.
2. In the Privileged Exec mode, enter the show command as shown in the example below:

The configured parameters enable further device configuration from any remote location.
Advanced Configuration

This section provides information about dynamic allocation of IP addresses and security management based on the authentication, authorization, and accounting (AAA) mechanism, and includes the following topics:

- Configuring IP Addresses through DHCP
- Configuring IP Addresses through BOOTP
- Security Management and Password Configuration

When configuring/receiving IP addresses through DHCP and BOOTP, the configuration received from these servers includes the IP address, and may include subnet mask and default gateway.

Retrieving an IP Address From a DHCP Server

When using the DHCP protocol to retrieve an IP address, the device acts as a DHCP client. When the device is reset, the DHCP command is saved in the configuration file, but not the IP address. To retrieve an IP address from a DHCP server, perform the following steps:

1. Select and connect any port to a DHCP server or to a subnet that has a DHCP server on it, in order to retrieve the IP address.
2 Enter the following commands to use the selected port for receiving the IP address. In the following example, the commands are based on the port type used for configuration.

- Assigning Dynamic IP Addresses:

  ```console
  console# configure
  console(config)# interface ethernet g1
  console(config-if)# ip address dhcp hostname device
  console(config-if)# exit
  console(config)#
  ```

  ```console
  Assigning Dynamic IP Addresses (on a VLAN):
  ```
  ```console
  console# configure
  console(config)# interface ethernet vlan 1
  console(config-if)# ip address dhcp hostname device
  console(config-if)# exit
  console(config)#
  ```

3 To verify the IP address, enter the `show ip interface` command at the system prompt as shown in the following example.
Starting and Configuring the Device

NOTE: It is not necessary to delete the device configuration to retrieve an IP address from the DHCP server.

NOTE: When copying configuration files, avoid using a configuration file that contains an instruction to enable DHCP on an interface that connects to the same DHCP server, or to one with an identical configuration. In this instance, the device retrieves the new configuration file and boots from it. The device then enables DHCP as instructed in the new configuration file, and the DHCP instructs it to reload the same file again.

Receiving an IP Address From a BOOTP Server

The standard BOOTP protocol is supported and enables the device to automatically download its IP host configuration from any standard BOOTP server in the network. In this case, the device acts as a BOOTP client.

To retrieve an IP address from a BOOTP server:

1. Select and connect any port to a BOOTP server or subnet containing such a server, to retrieve the IP address.

2. At the system prompt, enter the `delete startup configuration` command to delete the Startup Configuration from flash.

 The device reboots with no configuration and in 60 seconds starts sending BOOTP requests. The device receives the IP address automatically.

 NOTE: When the device reboot begins, any input at the ASCII terminal or keyboard automatically cancels the BOOTP process before completion and the device does not receive an IP address from the BOOTP server.

The following example illustrates the process:

```
console> enable

```

```
Console# show ip interface

<table>
<thead>
<tr>
<th>Gateway IP Address</th>
<th>Activity status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7.1.1</td>
<td>Active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP address</th>
<th>Interface</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7.1.192/24</td>
<td>VLAN 1</td>
<td>Static</td>
</tr>
<tr>
<td>10.7.2.192/24</td>
<td>VLAN 2</td>
<td>DHCP</td>
</tr>
</tbody>
</table>
```
console# delete startup-config
Startup file was deleted

console# reload
You haven’t saved your changes. Are you sure you want to continue (y/n) [n]?
This command will reset the whole system and disconnect your current session. Do you want to continue (y/n) [n]?
*
the switch reboots */

To verify the IP address, enter the show ip interface command.
The device is now configured with an IP address.

Security Management and Password Configuration

System security is handled through the Authentication, Authorization, and Accounting (AAA) mechanism that manages user access rights, privileges, and management methods. AAA uses both local and remote user databases. Data encryption is handled through the SSH mechanism.

The system is delivered with no default password configured. All passwords are user-defined. If a user-defined password is lost, a password recovery procedure can be invoked from the Startup menu. The procedure is applicable for the local terminal only and allows a one-time access to the device from the local terminal with no password entered.

Configuring Security Passwords

The security passwords can be configured for the following services:
- Terminal
- Telnet
- SSH
- HTTP
- HTTPS

NOTE: Passwords are user-defined.

NOTE: When creating a user name, the default priority is 1, which allows access but not configuration rights. A priority of 15 must be set to enable access and configuration rights to the device. Although user names can be assigned privilege level 15 without a password, it is recommended to always assign a password. If there is no specified password, privileged users can access the Web interface with any password.
Configuring an Initial Terminal Password
To configure an initial terminal password, enter the following commands:

```
console(config)# aaa authentication login default line
console(config)# aaa authentication enable default line
console(config)# line console
console(config-line)# login authentication default
console(config-line)# enable authentication default
console(config-line)# password george
```

- When initially logging on to a device through a terminal session, enter `george` at the password prompt.
- When changing a device’s mode to enable, enter `george` at the password prompt.

Configuring an Initial Telnet Password
To configure an initial Telnet password, enter the following commands:

```
console(config)# aaa authentication login default line
console(config)# aaa authentication enable default line
console(config)# line telnet
console(config-line)# login authentication default
console(config-line)# enable authentication default
console(config-line)# password bob
```

- When initially logging onto a device through a Telnet session, enter `bob` at the password prompt.
- When changing a device mode to enable, enter `bob`.

Configuring an Initial SSH Password
To configure an initial SSH password, enter the following commands:

```
console(config)# aaa authentication login default line
console(config)# aaa authentication enable default line
console(config)# line ssh
console(config-line)# login authentication default
console(config-line)# enable authentication default
console(config-line)# password jones.
```
When initially logging onto a device through a SSH session, enter \texttt{jones} at the password prompt.

When changing a device’s mode to enable, enter \texttt{jones}.

Configuring an Initial HTTP Password

To configure an initial HTTP password, enter the following commands:

```
console(config)# ip http authentication local
console(config)# username admin password user1 level 15
```

Configuring an Initial HTTPS Password

To configure an initial HTTPS password, enter the following commands:

```
console(config)# ip https authentication local
console(config)# username admin password user1 level 15
```

Enter the following commands once when configuring to use a terminal, a Telnet, or an SSH session in order to use an HTTPS session.

\textbf{NOTE:} In the Web browser enable SSL 2.0 or greater for the page content to be displayed.

```
console(config)# crypto certificate generate key_generate
console(config)# ip https server
```

When initially enabling an http or https session, enter \texttt{admin} for user name and \texttt{user1} for password.

\textbf{NOTE:} Http and Https services require level 15 access and connect directly to the configuration level access.

Startup Procedures

Startup Menu Procedures

The procedures called from the Startup menu cover software download, flash handling and password recovery. The diagnostics procedures are for use by technical support personnel only and are not disclosed in the document.

The Startup menu can be entered when booting the device – a user input must be entered immediately after the POST test.

To enter the Startup menu:

1. Turn the power on and watch for the auto-boot message.

```
************************** ************************
*****************  SYSTEM RESET  *****************
```

```
******************  SYSTEM RESET  ******************
```

```
*************** SYSTEM RESET ***************
```

```
*************** SYSTEM RE
------ Performing the Power-On Self Test (POST) ------

UART Channel Loopback Test.........................PASS
Testing the System SDRAM............................PASS
Boot1 Checksum Test..................................PASS
Boot2 Checksum Test..................................PASS
Flash Image Validation Test..........................PASS

BOOT Software Version 1.0.0.20 Built 22-Jan-2004 15:09:28
Processor: FireFox 88E6218 ARM946E-S, 64 MByte SDRAM.
I-Cache 8 KB. D-Cache 8 KB. Cache Enabled.

Autoboot in 2 seconds - press RETURN or Esc. to abort and enter prom.
Preparing to decompress...

2 When the auto-boot message appears, press <Enter> to get the Startup menu. The Startup menu procedures can be done using the ASCII terminal or Windows HyperTerminal.

[1] Download Software
[2] Erase Flash File
[4] Enter Diagnostic Mode
[5] Set Terminal Baud-Rate
Enter your choice or press 'ESC' to exit
The following sections describe the available Startup menu options.

**NOTE:** When selecting an option from the Startup menu, time out must be taken into account: if no selection is made within 35 seconds (default), the device times out. This default value can be changed through CLI.

### Software Download

The software download procedure is performed when a new version must be downloaded to replace the corrupted files, update or upgrade the system software. To download software from the Startup menu:

1. From the Startup menu, press [1]. The following prompt appears:
   **Downloading code using XMODEM**

2. When using the HyperTerminal, click **Transfer** on the HyperTerminal Menu Bar.

3. In the **Filename** field, enter the file path for the file to be downloaded.

4. Ensure that the **Xmodem** protocol is selected in the **Protocol** field.

5. Press **Send**. The software is downloaded.

**NOTE:** After software download, the device reboots automatically.

**NOTE:** The length of time taken by the download varies according to the tool used.

### Erase FLASH File

In some cases, the device configuration must be erased. If the configuration is erased, all parameters configured via CLI, EWS or SNMP must be reconfigured.

### Erasing the Device Configuration

1. From the Startup menu, press [2] within two seconds to erase flash file. The following message is displayed:
   **Warning! About to erase a Flash file.**

   Are you sure (Y/N)? y

2. Press **y**. The following message is displayed.
   **Write Flash file name (Up to 8 characters, Enter for none.):config**

   File config (if present) will be erased after system initialization

   =========== Press Enter To Continue ===========

3. Enter **config** as the name of the flash file. The configuration is erased and the device reboots.

4. Repeat the device initial configuration.
Password Recovery
If a password is lost, the Password Recovery procedure can be called from the Startup menu. The procedure enables entry to the device once without password.
To recover a lost password for the local terminal only:

1. From the Startup menu, type 3 and press <Enter>.
   The password is deleted.

   **NOTE:** To ensure device security, reconfigure passwords for applicable management methods.

Software Download Through TFTP Server
This section contains instructions for downloading device software (system and boot images) through a TFTP server. The TFTP server must be configured before beginning to download the software.

System Image Download
The device boots and runs when decompressing the system image from the flash memory area where a copy of the system image is stored. When a new image is downloaded, it is saved in the other area allocated for the other system image copy.
On the next boot, the device will decompress and run the currently active system image unless chosen otherwise.

To download a system image through the TFTP server:

1. Ensure that an IP address is configured on one of the device ports and pings can be sent to a TFTP server.
2. Make sure that the file to be downloaded is saved on the TFTP server (the ros file).
3. Enter `show version` to verify which software version is currently running on the device. The following is an example of the information that appears:
   ```
 console# show version
 SW version 1.0.0.42 (date 22-Jul-2004 time 13:42:41)
 Boot version 1.0.0.18 (date 01-Jun-2004 time 15:12:20)
 HW version
   ```
4. Enter `show bootvar` to verify which system image is currently active. The following is an example of the information that appears:
   ```
 console# sh bootvar
 Images currently available on the Flash
 Image-1 active (selected for next boot)
 Image-2 not active
   ```
Enter `copy tftp://{tftp address}/{file name} image` to copy a new system image to the device. When the new image is downloaded, it is saved in the area allocated for the other copy of system image (image-2, as given in the example). The following is an example of the information that appears:

```
console# copy tftp://176.215.31.3/file1.ros image
Accessing file ‘file1’ on 176.215.31.3
Loading file1 from 176.215.31.3:
!!!
!!!
Copy took 00:01:11 [hh:mm:ss]
```

Exclamation symbols indicate that a copying process is in progress. Each symbol (!) corresponds to 512 bytes transferred successfully. A period indicates that the copying process is timed out. Many periods in a row indicate that the copying process failed.

5 Select the image for the next boot by entering the `boot system` command. After this, enter `show bootvar` to verify that the copy indicated as a parameter in the `boot system` command is selected for the next boot.

The following is an example of the information that appears on the screen.

```
console# boot system image-2
console# sh boot
Images currently available on the Flash
Image-1 active
Image-2 not active (selected for next boot)
```

If the image for the next boot is not selected by entering the `boot system` command, the system boots from the currently active image.

6 Enter the `reload` command. The following message is displayed:

```
console# reload
This command will reset the whole system and disconnect your current session. Do you want to continue (y/n) [n]?
```

7 Enter y. The device reboots.

**Boot Image Download**

Loading a new boot image from the TFTP server and programming it into the flash updates the boot image. The boot image is loaded when the device is powered on. A user has no control over the boot image copies. To download a boot image through the TFTP server:

1 Ensure that an IP address is configured on one of the device ports and pings can be sent to a TFTP server.
Ensure that the file to be downloaded is saved on the TFTP server (the rfb file).

Enter `show version` to verify which software version is currently running on the device. The following is an example of the information that appears:

```
console# sh ver
SW version 1.0.0.42 (date 22-Jul-2004 time 13:42:41)
Boot version 1.0.0.18 (date 01-Jun-2004 time 15:12:20)
HW version 00.00.01 (date 01-May-2004 time 12:12:20)
```

Enter `copy tftp://(tftp address)/{file name} boot` to copy the boot image to the device. The following is an example of the information that appears:

```
console# copy tftp://176.215.31.3/332448-10018.rfb boot
Erasing file..done.
!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Copy: 2739187 bytes copied in 00:01:13 [hh:mm:ss]
```

Enter the `reload` command. The following message is displayed:

```
console# reload
This command will reset the whole system and disconnect your current
session. Do you want to continue (y/n) [n]?
```

Enter `y`.

The device reboots.
Using Dell OpenManage Switch Administrator

This section provides an introduction to the user interface.

Understanding the Interface

The home page contains the following views:

- **Tree View** — Located on the left side of the home page, the tree view provides an expandable view of the features and their components.
- **Device View** — Located on the right side of the home page, the device view provides a view of the device, an information or table area, and configuration instructions.

![Switch Administrator Components](image)

Table 5-7 lists the interface components with their corresponding numbers.
Device Representation

The PowerConnect home page contains a graphical device representation of the front panel.

Table 5-7. Interface Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The tree view contains a list of the different device features. The branches in the tree view can be expanded to view all the components under a specific feature, or retracted to hide the feature’s components. By dragging the vertical bar to the right, the tree area can be expanded to display the full name of a component.</td>
</tr>
<tr>
<td>2</td>
<td>The device view provides information about device ports, current configuration and status, table information, and feature components. Depending on the option selected, the area at the bottom of the device view displays other device information and/or dialogs for configuring parameters.</td>
</tr>
<tr>
<td>3</td>
<td>The components list contains a list of the feature components. Components can also be viewed by expanding a feature in the tree view.</td>
</tr>
<tr>
<td>4</td>
<td>The information buttons provide access to information about the device and access to Dell Support. For more information, see “Information Buttons.”</td>
</tr>
</tbody>
</table>

Figure 5-14. Port LED Indicators

The port coloring indicates if a specific port is currently active. Ports can be the following colors:
### Table 5-8. Led Indicators

<table>
<thead>
<tr>
<th>Component</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Indicators</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>The port is currently enabled.</td>
</tr>
<tr>
<td>Red</td>
<td>An error has occurred on the port.</td>
</tr>
<tr>
<td>Blue</td>
<td>The port is currently disabled.</td>
</tr>
</tbody>
</table>

**NOTE:** The Port LEDs are not reflected in PowerConnect front panel in the PowerConnect OpenManage Switch Administrator. LED status can only be determined by viewing the actual device. For more information about LEDs, see "LED Definitions".

### Using the Switch Administrator Buttons

This section describes the buttons found on the OpenManage Switch Administrator interface.

#### Information Buttons

Information buttons provide access to on-line support and online help, as well as information about the OpenManage Switch Administrator interfaces.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support</td>
<td>Opens the Dell Support page at support.dell.com.</td>
</tr>
<tr>
<td>Help</td>
<td>Online help containing information to assist in configuring and managing the device. The online help pages are linked directly to the page currently open. For example, if the IP Addressing page is open, the help topic for that page opens when Help is clicked.</td>
</tr>
<tr>
<td>About</td>
<td>Contains the version and build number and Dell copyright information.</td>
</tr>
<tr>
<td>Log Out</td>
<td>Logs out of the application and closes the browser window.</td>
</tr>
</tbody>
</table>

#### Device Management Buttons

Device Management buttons provide an easy method of configuring device information, and includes the following:
Using Dell OpenManage Switch Administrator

Table 5-10. Device Management Buttons

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply Changes</td>
<td>Applies changes to the device.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds information to tables or dialogs.</td>
</tr>
<tr>
<td>Telnet</td>
<td>Starts a Telnet session.</td>
</tr>
<tr>
<td>Query</td>
<td>Queries tables.</td>
</tr>
<tr>
<td>Show All</td>
<td>Displays the device tables.</td>
</tr>
<tr>
<td>Left arrow/Right arrow</td>
<td>Moves information between lists.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Refreshes device information.</td>
</tr>
<tr>
<td>Reset All Counters</td>
<td>Clears statistic counters.</td>
</tr>
<tr>
<td>Print</td>
<td>Prints the Network Management System page and/or table information.</td>
</tr>
<tr>
<td>Show Neighbors Info</td>
<td>Displays the Neighbors List from the Neighbors Table page.</td>
</tr>
<tr>
<td>Draw</td>
<td>Creates statistics charts on-the-fly.</td>
</tr>
</tbody>
</table>

Starting the Application

1. Open a web browser.
2. Enter the device’s IP address (as defined in the CLI) in the address bar and press <Enter>.
   For information about assigning an IP address to a device, see "Static IP Address and Subnet Mask."
3. When the Enter Network Password window opens, enter a user name and password.
   - **NOTE:** The device is not configured with a default password, and can be configured without entering a password. For information about recovering a lost password, see "Password Recovery."
   - **NOTE:** Passwords are both case sensitive and alpha-numeric.
4. Click OK.
   The Dell PowerConnect OpenManage™ Switch Administrator home page opens.

Accessing the Device Through the CLI

The device can be managed over a direct connection to the console port or via a Telnet connection. Using the CLI is similar to entering commands on a Linux system. If access is via a Telnet connection, ensure the device has an IP address defined and that the workstation used to access the device is connected to the device prior to beginning using CLI commands.

For information about configuring an initial IP Address, see "Static IP Address and Subnet Mask."
NOTE: Ensure the client is loaded, before using the CLI.

Console Connection

1. Power on the device and wait until the startup is complete.
2. When the Console> prompt displays, type enable and press <Enter>.
3. Configure the device and enter the necessary commands to complete the required tasks.
4. When finished, exit the session with the quit or exit command.

NOTE: If a different user logs into the system in the Privilege EXEC command mode, the current user is logged off and the new user is logged in.

Telnet Connection

Telnet is a terminal emulation TCP/IP protocol. ASCII terminals can be virtually connected to the local device through a TCP/IP protocol network. Telnet is an alternative to a local login terminal where a remote login is required.

The device supports up to four simultaneous Telnet sessions. All CLI commands can be used over a telnet session.

To start a Telnet session:

1. Select Start > Run.

   The Run window opens.

2. In the Run window, type Telnet <IP address> in the Open field.
3. Click OK to begin the Telnet session.
Using the CLI

This section provides information for using the CLI.

Command Mode Overview

The CLI is divided into command modes. Each command mode has a specific command set. Entering a question mark at the console prompt displays a list of commands available for that particular command mode.

In each mode, a specific command is used to navigate from one command mode to another. During the CLI session initialization, the CLI mode is the User EXEC mode. Only a limited subset of commands are available in the User EXEC mode. This level is reserved for tasks that do not change the console configuration and is used to access configuration sub-systems such as the CLI. To enter the next level, the Privileged EXEC mode, a password is required (if configured).

The Privileged EXEC mode provides access to the device global configuration. For specific global configurations within the device, enter the next level, Global Configuration mode. A password is not required.

The Global Configuration mode manages the device configuration on a global level.

The Interface Configuration mode configures the device at the physical interface level. Interface commands which require subcommands have another level called the Subinterface Configuration mode. A password is not required.

User EXEC Mode

After logging into the device, the EXEC command mode is enabled. The user-level prompt consists of the host name followed by the angle bracket (>). For example:

console>

NOTE: The default host name is console unless it has been modified during initial configuration.

The user EXEC commands permit connecting to remote devices, changing terminal settings on a temporary basis, performing basic tests, and listing system information.

To list the user EXEC commands, enter a question mark at the command prompt.

Privileged EXEC Mode

Privileged access can be protected to prevent unauthorized access and ensure operating parameters. Passwords are displayed in the * **** format on the screen, and are case sensitive.

To access and list the Privileged EXEC Mode commands:

1. At the prompt type enable and press <Enter>.
2. When a password prompt displays, enter the password and press <Enter>.

The Privileged EXEC mode prompt displays as the device host name followed by #. For example:
To list the Privileged EXEC commands, type a question mark at the command prompt and press <Enter>.

To return from Privileged EXEC Mode to User EXEC Mode use any of the following commands: disable, exit/end, or <Ctrl><Z>.

The following example illustrates accessing privileged EXEC mode and then returning to the User EXEC mode:

```
console>enable
Enter Password: *****
```
```
console#
```
```
console#disable
console#
```

Use the `exit` command to move back to a previous mode. For example, from Interface Configuration mode to Global Configuration mode, and from Global Configuration mode to Privileged EXEC mode.

**Global Configuration Mode**

Global Configuration commands apply to system features, rather than a specific protocol or interface.

To access Global Configuration mode, at the Privileged EXEC Mode prompt, type `configure` and press <Enter>. The Global Configuration Mode displays as the device host name followed by (config) and the pound sign #.

```
console(config)#
```

To list the Global Configuration commands, enter a question mark at the command prompt.

To return from Global Configuration mode to Privileged EXEC mode, type the `exit` command or use the `<Ctrl><Z>` command.

The following example illustrates how to access Global Configuration Mode and return back to the Privileged EXEC Mode:

```
console#
```
```
console#configure
```
```
console(config)#exit
```
```
console#
```
**Interface Configuration Mode**
Interface configuration commands modify specific IP interface settings, including bridge-group, description, etc.

**VLAN Database Mode**
The VLAN mode contains commands to create and configure a VLAN as a whole, for example, to create a VLAN and apply an IP address to the VLAN. The following is an example of the VLAN mode prompt:

```
Console # vlan database
Console (config-vlan) #
```

**Port Channel Mode**
The Port Channel mode contains commands for configuring Link Aggregation Groups (LAG). The following is an example of the Port Channel mode prompt:

```
Console (config)# interface port-channel 1
Console (config-if) #
```

**Interface Mode**
The Interface mode contains commands that configure the interface. The Global Configuration mode command `interface ethernet` is used to enter the interface configuration mode. The following is an example of the Interface mode prompt:

```
console> enable
console# configure
console(config)# interface ethernet g18
console(config-if) #
```

**Management Access List**
The Management Access List mode contains commands to define management access-lists. The Global Configuration mode command `management access-list` is used to enter the Management Access List Configuration mode.

The following example shows how to create an access-list called "mlist", configure two management interfaces ethernet g1 and ethernet g9, and make the access-list the active list:

```
Console (config)# management access-list mlist
Console (config-macl)# permit ethernet g1
Console (config-macl)# permit ethernet g9
```
Console (config-macl)# exit
Console (config)# management access-class mlist

**SSH Public Key**

The SSH Public Key mode contains commands to manually specify other device SSH public keys. The Global Configuration mode command `crypto key pubkey-chain ssh` is used to enter the SSH Public Key-chain Configuration mode.

The following example enters the SSH Public Key-chain configuration mode:

```
Console(config)# crypto key pubkey-chain ssh
Console(config-pubkey-chain)#
```

**CLI Examples**

CLI commands are provided as configuration examples. For a full description of the CLI commands, including examples, refer to the "CLI Reference Guide" included on the Documentation CD.
Configuring System Information

This section provides information for defining system parameters including security features, downloading device software, and resetting the device. To open the System page, click System in the tree view.

Figure 6-15. System
Defining General Device Information

The General page contains links to pages for configuring device parameters.

Viewing the Asset Page

The Asset page contains parameters for configuring general device information, including the system name, location, and contact, the system MAC Address, System Object ID, date, time, and System Up Time. To open the Asset page, click System → General → Asset in the tree view.

Figure 6-16. Asset

System Name (0-160 Characters) — Defines the user-defined device name.
System Contact (0-160 Characters) — Specifies the name of the contact person.
System Location (0-160 Characters) — Specifies the location where the system is currently running.
MAC Address — Specifies the device MAC address.
Sys Object ID — Specifies the vendor’s authoritative identification of the network management subsystem contained in the entity.
Service Tag — Specifies the service reference number used when servicing the device.
Asset Tag (0-16 Characters) — Specifies the user-defined device reference.
Serial No. — Specifies the device serial number.
Date (MM/DD/YY) — Specifies the current date. The format is month, day, year, for example, 11/10/02 is November 10, 2002.
Time (HH:MM:SS) — Specifies the time. The format is hour, minute, second, for example,
20:12:03 is eight twelve and three seconds in the evening.

**System Up Time** — Specifies the amount of time since the last device reset. The system time is displayed in the following format: Days, Hours, Minutes and Seconds. For example, 41 days, 2 hours, 22 minutes and 15 seconds.

**Defining System Information:**

1. Open the Asset page.
2. Define the relevant fields.
3. Click Apply Changes.
   
   The system parameters are defined, and the device is updated.

**Initiating a Telnet Session:**

1. Open the Asset page.
2. Click Telnet.
   
   A Telnet session is initiated.
Configuring Device Information Using the CLI Commands

The following table summarizes the equivalent CLI commands for viewing and setting fields displayed in the Asset page.

Table 6-11. Asset CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname name</td>
<td>Specifies or modifies the device host name.</td>
</tr>
<tr>
<td>snmp-server contact text</td>
<td>Sets up a system contact.</td>
</tr>
<tr>
<td>snmp-server location text</td>
<td>Enters information on where the device is located.</td>
</tr>
<tr>
<td>clock set hh:mm:ss day month year</td>
<td>Manually sets the system clock and date.</td>
</tr>
<tr>
<td>show clock [detail]</td>
<td>Displays the time and date from the system clock.</td>
</tr>
<tr>
<td>show system id</td>
<td>Displays the service tag information.</td>
</tr>
<tr>
<td>show system</td>
<td>Displays system information.</td>
</tr>
<tr>
<td>asset-tag</td>
<td>Sets the device asset tag.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```plaintext
Console (config)# hostname dell
Console (config)# snmp-server contact Dell_Tech_Supp
Console (config)# snmp-server location New_York
Console (config)# exit
Console # exit
Console (config)# asset-tag 1qwepot
Console> clock set 13:32:00 7 Dec 2004
Console> show clock
13:32:00 (UTC+0) Dec 7 2004
No time source
```
Defining System Time Settings

The Time Synchronization page contains fields for defining system time parameters for both the local hardware clock, and the external SNTP clock. If the system time is kept using an external SNTP clock, and the external SNTP clock fails, the system time reverts to the local hardware clock. Daylight Savings Time can be enabled on the device. The following is a list of Daylight Time start and end times in specific countries:

- **Albania** — Last weekend of March until the last weekend of October.
- **Australia** — From the end of October until the end of March.
- **Australia - Tasmania** — From beginning of October to the end of March.
- **Armenia** — Last weekend of March until the last weekend of October.
- **Austria** — Last weekend of March until the last weekend of October.
- **Bahamas** — From April to October, in conjunction with U.S. summer hours.
- **Belarus** — Last weekend of March until the last weekend of October.
- **Belgium** — Last weekend of March until the last weekend of October.
- **Brazil** — From the 3rd Sunday in October until the 3rd Saturday in March. During the period of Daylight Saving Time, Brazilian clocks go forward one hour in most of the Brazilian southeast.
- **Chile** — Easter Island 9th March 12th October. The first Sunday in March or after 9th March.
- **China** — China does not operate Daylight Saving Time.
- **Canada** — From the first Sunday in April until the last Sunday of October. Daylight Saving Time is usually regulated by provincial and territorial governments. Exceptions may exist in certain municipalities.
- **Cuba** — From the last Sunday of March to the last Sunday of October.
- **Cyprus** — Last weekend of March until the last weekend of October.
- **Denmark** — Last weekend of March until the last weekend of October.
- **Egypt** — Last Friday in April until the last Thursday in September.
- **Estonia** — Last weekend of March until the last weekend of October.
- **Finland** — Last weekend of March until the last weekend of October.
- **France** — Last weekend of March until the last weekend of October.
- **Germany** — Last weekend of March until the last weekend of October.
- **Greece** — Last weekend of March until the last weekend of October.
- **Hungary** — Last weekend of March until the last weekend of October.
- **India** — India does not operate Daylight Saving Time.
- **Iran** — From 1st Farvardin to the 1st Mehr.
- **Iraq** — From 1st April until 1st October.
- **Ireland** — Last weekend of March until the last weekend of October.
- **Israel** — Varies year-to-year.
- **Italy** — Last weekend of March until the last weekend of October.
- **Japan** — Japan does not operate Daylight Saving Time.
- **Jordan** — Last weekend of March until the last weekend of October.
- **Latvia** — Last weekend of March until the last weekend of October.
- **Lebanon** — Last weekend of March until the last weekend of October.
- **Lithuania** — Last weekend of March until the last weekend of October.
- **Luxembourg** — Last weekend of March until the last weekend of October.
- **Macedonia** — Last weekend of March until the last weekend of October.
- **Mexico** — From the first Sunday in April at 02:00 to the last Sunday in October at 02:00.
- **Moldova** — Last weekend of March until the last weekend of October.
- **Montenegro** — Last weekend of March until the last weekend of October.
- **Netherlands** — Last weekend of March until the last weekend of October.
- **New Zealand** — From the first Sunday in October until the first Sunday on or after 15th March.
• Norway — Last weekend of March until the last weekend of October.
• Paraguay — From 6th April until 7th September.
• Poland — Last weekend of March until the last weekend of October.
• Portugal — Last weekend of March until the last weekend of October.
• Romania — Last weekend of March until the last weekend of October.
• Russia — From the 29th March until the 25th October.
• Serbia — Last weekend of March until the last weekend of October.
• Slovak Republic — Last weekend of March until the last weekend of October.
• South Africa — South Africa does not operate Daylight Saving Time.
• Spain — Last weekend of March until the last weekend of October.
• Sweden — Last weekend of March until the last weekend of October.
• Switzerland — Last weekend of March until the last weekend of October.
• Syria — From 31st March until 30th October.
• Taiwan — Taiwan does not operate Daylight Saving Time.
• Turkey — Last weekend of March until the last weekend of October.
• United Kingdom — Last weekend of March until the last weekend of October.
• United States of America — From the first Sunday in April at 02:00 to the last Sunday in October at 02:00.

For more information on SNTP, see "Configuring SNTP Settings".

To open the 'Time Synchronization' page, click System → General → Time Synchronization in the tree view.

Figure 6-17. Time Synchronization
Clock Source — The source used to set the system clock. The possible field values:

SNTP — Specifies that the system time is set via an SNTP server. For more information, see "Configuring SNTP Settings".

None — Specifies that the system time is not set by an external source.

Local Settings

Date — Defines the system date. The field format is Day:Month:Year, for example, 04 May 2050.

Local Time — Defines the system time. The field format is HH:MM:SS, for example, 21:15:03.

Time Zone Offset — The difference between Greenwich Mean Time (GMT) and local time. For example, the Time Zone Offset for Paris is GMT +1, while the local time in New York is GMT –5.

Daylight Savings — Enables the Daylight Savings Time (DST) on the device based on the devices location. The possible field values are:

USA — The device switches to DST at 2 a.m. on the first Sunday of April, and reverts to standard time at 2 a.m. on the last Sunday of October.

European — The device switches to DST at 1:00 am on the last Sunday in March and reverts to standard time at 1:00 am on the last Sunday in October. The European option applies to EU members, and other European countries using the EU standard.

Other — The DST definitions are user-defined based on the device locality. If Other is selected, the From and To fields must be defined.

From — Defines the time that DST begins in countries other than USA or Europe, in the format DayMonthYear in one field and time in another. For example, DST begins on the 25th October 2007 5:00 am, the two fields will be 25Oct07 and 5:00. The possible field values are:

Date — The date at which DST begins. The possible field range is 1-31.

Month — The month of the year in which DST begins. The possible field range is Jan-Dec.

Year — The year in which the configured DST begins.

Time — The time at which DST begins. The field format is Hour:Minute, for example, 05:30.

To — Defines the time that DST ends in countries other than USA or Europe in the format DayMonthYear in one field and time in another. For example, DST ends on the 23rd March 2008 12:00 am, the two fields will be 23Mar08 and 12:00. The possible field values are:

Date — The date at which DST ends. The possible field range is 1-31.

Month — The month of the year in which DST ends. The possible field range is Jan-Dec.

Year — The year in which the configured DST ends.
Configuring System Information

**Time** — The time at which DST starts. The field format is Hour:Minute, for example, 05:30.

**Recurring** — Defines the time that DST starts in countries other than USA or European where the DST is constant year to year. The possible field values are:

**From** — Defines the time that DST begins each year. For example, DST begins locally every second Sunday in April at 5:00 am. The possible field values are:

- **Day** — The day of the week from which DST begins every year. The possible field range is Sunday-Saturday.
- **Week** — The week within the month from which DST begins every year. The possible field range is 1-5.
- **Month** — The month of the year in which DST begins every year. The possible field range is Jan.-Dec.
- **Time** — The time at which DST begins every year. The field format is Hour:Minute, for example, 02:10.

**To** — Defines the recurring time that DST ends each year. For example, DST ends locally every fourth Friday in October at 5:00 am. The possible field values are:

- **Day** — The day of the week at which DST ends every year. The possible field range is Sunday-Saturday.
- **Week** — The week within the month at which DST ends every year. The possible field range is 1-5.
- **Month** — The month of the year in which DST ends every year. The possible field range is Jan.-Dec.
- **Time** — The time at which DST ends every year. The field format is Hour:Minute, for example, 05:30.

**Selecting a Clock Source**

1. Open the Time Synchronization page.
2. Define the Clock Source field.
3. Click Apply Changes.
   The Clock source is selected, and the device is updated.

**Defining Local Clock Settings**

1. Open the Time Synchronization page.
2. Define the Recurring fields.
3. Click Apply Changes.
   The local clock settings are applied.
Defining the External SNTP Clock Settings

1. Open the Time Synchronization page.
2. Define the fields.
3. Click Apply Changes.
   The external clock settings are applied.

Defining Clock Settings Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the Time Synchronization page.

<table>
<thead>
<tr>
<th>CLI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clock source {snntp}</td>
<td>Configures an external time source for the system clock.</td>
</tr>
<tr>
<td>clock timezone hours-offset [minutes minutes-offset][zone acronym]</td>
<td>Sets the time zone for display purposes.</td>
</tr>
<tr>
<td>clock summer-time</td>
<td>Configures the system to automatically switch to summer time (Daylight Savings Time).</td>
</tr>
<tr>
<td>clock summer-time recurring (usa</td>
<td>eu</td>
</tr>
<tr>
<td>clock summer-time date date month year hh:mm date month year hh:mm [offset offset] [zone acronym]</td>
<td>Configures the system to automatically switch to summer time (Daylight Savings Time) for a specific period - date/month/year format.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console(config)# clock timezone -6 zone CST
Console(config)# clock summer-time recurring first sun apr 2:00 last sun oct 2:00
```
Viewing System Health Information

The System Health page shows physical device hardware information. To open the System Health page, click System→General→Health in the tree view.

Figure 6-18. System Health

Power Supply Status — The main power supply state. The possible field values are:
- ✓ — The main power supply is operating normally for the specified unit.
- ✗ — The main power supply is not operating normally for the specified unit.
- Not Present — The power supply is not present for the specified unit.

Fan — The device fan status. The possible field values are:
- ✓ — The fans are operating normally for the specified unit.
- ✗ — The fans are not operating normally for the specified unit.
- Not Present — The fans are not present for the specified unit.
Viewing System Health Information Using the CLI Commands

The following table summarizes the equivalent CLI command for viewing fields displayed in the System Health page.

Table 6-13. System Health CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show system</code></td>
<td>Displays system information.</td>
</tr>
</tbody>
</table>

```
DELL Switch# show system
System Description: Ethernet Routing Switch
System Up Time (days,hour:min:sec): 0,00:04:17
System Contact: spk
System Name: DELL Switch
System Location: R&D
System MAC Address: 00:10:b5:f4:00:01
Sys Object ID: 1.3.6.1.4.1.674.10895.3000
Type: PowerConnect 5324

Power Supply Status
------------- -------
Main OK
Redundant OK

FAN Status
-------- ---
1 OK
2 OK

DELL Switch#
```
Viewing the Versions Page

The Versions page contains information about the hardware and software versions currently running. To open the Versions page, click System→General→Versions in the tree view.

Figure 6-19. Versions
Software Version — The current software version running on the device.
Boot Version — The current Boot version running on the device.
Hardware Version — The current hardware versions running on the device.

Displaying Device Versions Using the CLI
The following table summarizes the equivalent CLI commands for viewing fields displayed in the Versions page.

Table 6-14. Versions CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show version</td>
<td>Displays system version information.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console> show version
SW version x.xxx (date 23-Jul-xxxx time 17:34:19)
Boot version x.xxx (date 17-Jan-xxxx time 11:48:21)
HW version x.x.x
```
Resetting the Device

The Reset page enables the device to be reset from a remote location. To open the Reset page, click System→General→Reset in the tree view.

![Reset Page](image)

**NOTE:** Save all changes to the Running Configuration file before resetting the device. This prevents the current device configuration from being lost. For more information about saving Configuration files, see “Managing Files”.

**Resetting the Device**

1. Open the Reset page
2. Click reset.
   
   A confirmation message displays.
3. Click OK.
   
   The device is reset. After the device is reset, a prompt for a user name and password displays.
4. Enter a user name and password to reconnect to the Web Interface.
Resetting the Device Using the CLI

The following table summarizes the equivalent CLI commands for performing a reset of the device via the CLI:

**Table 6-15. Reset CLI Command**

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reload</td>
<td>Reloads the operating system.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI command:

```
Console >reload
This command will reset the whole system and disconnect your current
session. Do you want to continue (y/n) [n] ?
```

Configuring SNTP Settings

The device supports the Simple Network Time Protocol (SNTP). SNTP assures accurate network device clock time synchronization up to the millisecond. Time synchronization is performed by a network SNTP server. The device operates only as an SNTP client, and cannot provide time services to other systems.

The device can poll the following server types for the server time:

- Unicast
- Anycast
- Broadcast

Time sources are established by Stratums. Stratums define the accuracy of the reference clock. The higher the stratum (where zero is the highest), the more accurate the clock. The device receives time from stratum 1 and above.

The following is an example of stratums:

- **Stratum 0** — A real time clock is used as the time source, for example, a GPS system.
- **Stratum 1** — A server that is directly linked to a Stratum 0 time source is used. Stratum 1 time servers provide primary network time standards.
- **Stratum 2** — The time source is distanced from the Stratum 1 server over a network path. For example, a Stratum 2 server receives the time over a network link, via NTP, from a Stratum 1 server.
Information received from SNTP servers is evaluated based on the Time level and server type.
SNTP time definitions are assessed and determined by the following time levels:

- **T1** — The time at which the original request was sent by the client.
- **T2** — The time at which the original request was received by the server.
- **T3** — The time at which the server sent the client a reply.
- **T4** — The time at which the client received the server’s reply.

**Polling for Unicast Time Information**
Polling for Unicast information is used for polling a server for which the IP address is known. T1 - T4 are used to determine the server time. This is the preferred method for synchronizing switch time.

**Polling for Anycast Time Information**
Polling for Anycast information is used when the server IP address is unknown. The first anycast server to return a response is used to set the time value. Time levels T3 and T4 are used to determine the server time. Using Anycast time information for synchronizing switch time is preferred to using Broadcast time information.

**Broadcast Time Information**
Broadcast information is used when the server IP address is unknown. When a broadcast message is sent from an SNTP server, the SNTP client listens for the response. The SNTP client neither sends time information requests nor receives responses from the Broadcast server.

MD5 (Message Digest 5) Authentication safeguards switch synchronization paths to SNTP servers. MD5 is an algorithm that produces a 128-bit hash. MD5 is a variation of MD4, and increases MD4 security. MD5 verifies the integrity of the communication, authenticates the origin of the communication.

Click **System→SNTP** in the tree view to open the SNTP page.
Defining SNTP Global Parameters

The SNTP Global Settings page provides information for defining SNTP parameters globally. To open the SNTP Global Settings page, click System →SNTP→SNTP Global Settings in the tree view.

Figure 6-21. SNTP Global Settings
Poll Interval (60-86400) — Defines the interval (in seconds) at which the SNTP server is polled for Unicast information.

Receive Broadcast Servers Updates — Polls the SNTP servers for Broadcast server time information on the selected interfaces.

Receive Anycast Servers Updates — Polls the SNTP server for Anycast server time information, when enabled. If both the Receive Anycast Servers Update, and the Receive Broadcast Servers Update fields are enabled, the system time is set according the Anycast server time information.

Receive Unicast Servers Updates — Polls the SNTP server for Unicast server time information, when enabled. If the Receive Broadcast Servers Updates, Receive Anycast Servers Updates, and the Receive Unicast Servers Updates fields are all enabled, the system time is set according the Unicast server time information.

Poll Unicast Servers — Sends SNTP Unicast forwarding information to the SNTP server, when enabled.

Defining SNTP Global Parameters Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the SNTP Global Settings page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sntp broadcast client enable</td>
<td>Enables SNTP broadcast clients</td>
</tr>
<tr>
<td>sntp anycast client enable</td>
<td>Enables SNTP anycast clients</td>
</tr>
<tr>
<td>sntp unicast client enable</td>
<td>Enables SNTP predefined unicast clients</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
console> enable
console# configure
console(config)# sntp anycast client enable
```

Defining SNTP Authentication Methods

The SNTP Authentication page enables SNTP authentication between the and an SNTP server. The means by which the SNTP server is authenticated is also selected in the SNTP Authentication page. Click System →SNTP→Authentication in the tree view to open the SNTP Authentication page.
SNTP Authentication — Enables authenticating an SNTP session between the device and an SNTP server, when enabled.

Encryption Key ID — Defines the Key Identification used to authenticate the SNTP server and device. The field value is upto 4294967295 characters.

Authentication Key (1-8 Characters) — Specifies the key used for authentication.

Trusted Key — Specifies the Encryption Key used to authenticate the SNTP server.

Remove — Removes when

Adding an SNTP Authentication Key
1. Open the SNTP Authentication page.
2. Click Add.
   The Add Authentication Key page opens:

Figure 6-23. Add Authentication Key

3. Define the fields.
4. Click Apply Changes.
   The SNTP Authentication Key is added, and the device is updated.

Displaying the Authentication Key Table
1. Open the SNTP Authentication page.
2. Click Show All.
   The Authentication Key Table opens:

Figure 6-24. Authentication Key Table

Deleting the Authentication Key
1. Open the SNTP Authentication page.
2. Click Show All.
   The Authentication Key Table opens.
3. Select an Authentication Key Table entry.
4. Select the Remove check box.
5. Click Apply Changes.
   The entry is removed, and the device is updated.

Defining SNTP Authentication Settings Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the SNTP Authentication page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sntp authenticate</td>
<td>Defines authentication for received Network Time Protocol traffic from servers.</td>
</tr>
<tr>
<td>sntp authentication-key number md5 value</td>
<td>Defines an authentication key for SNTP.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
console> enable
console# configure
Console(config)# sntp authentication-key 8 md5 ClkKey
Console(config)# sntp trusted-key 8
Console(config)# sntp authenticate
```

Defining SNTP Servers

The SNTP Servers page contains information for enabling SNTP servers, as well as adding new SNTP servers. In addition, the SNTP Servers page enables the device to request and accept SNTP traffic from a server. To open the SNTP Servers page, click System →SNTP →SNTP Servers in the tree view.
### SNTP Servers

**SNTP Server** — Enter a user-defined SNTP server IP addresses or hostname. Up to eight SNTP servers can be defined. This field can contain 1 - 158 characters.

**Poll Interval** — Enables polling the selected SNTP Server for system time information, when enabled.

**Encryption Key ID** — Specifies the Key Identification used to communicate between the SNTP server and device. The range is 1 - 4294967295.

**Preference** — The SNTP server providing SNTP system time information. The possible field values are:

- **Primary** — The primary server provides SNTP information.
- **Secondary** — The backup server provides SNTP information.

**Status** — The operating SNTP server status. The possible field values are:

- **Up** — The SNTP server is currently operating normally.
- **Down** — The SNTP server is currently not operating normally.
- **Unknown** — The SNTP server status is currently unknown.

**Last Response** — The last time a response was received from the SNTP server.

**Offset** — Timestamp difference between the device local clock and the acquired time from the SNTP server.

**Delay** — The amount of time it takes to reach the SNTP server.

**Remove** — Removes a specific SNTP server from the SNTP Server list, when selected.
Adding an SNTP Server

1. Open the SNTP Servers page.
2. Click Add.

The Add SNTP Server page opens:

Figure 6-26. Add SNTP Server

Add SNTP Server page

3. Define the fields.
4. Click Apply Changes.

The SNTP Server is added, and the device is updated.

The following table summarizes the equivalent CLI commands for setting fields displayed in the Add SNTP Server page.

Table 6-18. SNTP Server CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sntp server ip-</code></td>
<td>Configures the to use SNTP to request and accept NTP traffic from a server.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td><code>poll</code> <code>key</code> <code>keyid</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
console> enable
console# configure
Console(config)# sntp server 100.1.1.1 poll key 10
```

Displaying the SNTP Server Table

1. Open the SNTP Servers page.
2. Click Show All.

The SNTP Servers Table opens:
Figure 6-27. SNTP Servers Table

Modifying an SNTP Server
1. Open the SNTP Servers page.
2. Click Show All.
   The SNTP Servers Table opens.
3. Select an SNTP Server entry.
4. Modify the relevant fields.
5. Click Apply Changes.
   The SNTP Server information is updated.

Deleting the SNTP Server
1. Open the SNTP Servers page.
2. Click Show All.
   The SNTP Servers Table opens.
3. Select an SNTP Server entry.
4. Select the Remove check box.
5. Click Apply Changes.
   The entry is removed, and the device is updated.
Defining SNTP Servers Settings Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the SNTP Servers page.

Table 6-19. SNTP Server CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`snmp server ip-address</td>
<td>hostname [poll] [key keyid]`</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:
Defining SNTP Interfaces

The SNTP Broadcast Interface Table contains fields for setting SNTP on different interfaces. To open the SNTP Broadcast Interface Table, click System→SNTP→Interfaces Settings.

The SNTP Broadcast Interface Table contains the following fields:

- **Interface** — Contains an interface list on which SNTP can be enabled.
Receive Server Updates —
Remove — Removes SNTP from a specific interface, when selected.

**Adding an SNTP Interface**

1. Open the SNTP Broadcast Interface Table page.
2. Click Add.
   
   The Add SNTP Interface page opens:

   **Figure 6-28. Add SNTP Interface Page**

3. Define the relevant fields.
4. Click Apply Changes.
   
   The SNTP interface is added, and the device is updated.

**Defining SNTP Interface Settings Using CLI Commands**

The following table summarizes the equivalent CLI commands for setting fields displayed in the SNTP Broadcast Interface Table.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sntp client enable</td>
<td>Enables the Simple Network Time Protocol (SNTP) client on an interface.</td>
</tr>
<tr>
<td>show sntp configuration</td>
<td>Shows the configuration of the Simple Network Time Protocol (SNTP).</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:
Console# `show sntp configuration`
Polling interval: 7200 seconds.

MD5 Authentication keys: 8, 9
Authentication is required for synchronization.
Trusted Keys: 8,9

Unicast Clients Polling: Enabled.

<table>
<thead>
<tr>
<th>Server</th>
<th>Polling</th>
<th>Encryption Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.1.1.8</td>
<td>Enabled</td>
<td>9</td>
</tr>
<tr>
<td>176.1.8.179</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Broadcast Clients: Enabled
Broadcast Clients Poll: Enabled
Broadcast Interfaces: g1, g3
Managing Logs

The Logs page contains links to various log pages. To open the Logs page, click System → Logs in the tree view.

The Logs page contains links to various log pages.

Defining Global Log Parameters

The System Logs enable viewing device events in real time, and recording the events for later usage. System Logs record and manage events and report errors or informational messages.

Event messages have a unique format, as per the SYSLOG RFC recommended message format for all error reporting. For example, Syslog and local device reporting messages are assigned a severity code, and include a message mnemonic, which identifies the source application generating the message. It allows messages to be filtered based on their urgency or relevancy. Each message severity determines the set of event logging devices that are sent per each event logging.

The following table contains the Log Severity Levels:

<table>
<thead>
<tr>
<th>Severity Type</th>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>0</td>
<td>The system is not functioning.</td>
</tr>
<tr>
<td>Alert</td>
<td>1</td>
<td>The system needs immediate attention.</td>
</tr>
<tr>
<td>Critical</td>
<td>2</td>
<td>The system is in a critical state.</td>
</tr>
<tr>
<td>Error</td>
<td>3</td>
<td>A system error has occurred.</td>
</tr>
<tr>
<td>Warning</td>
<td>4</td>
<td>A system warning has occurred.</td>
</tr>
<tr>
<td>Notice</td>
<td>5</td>
<td>The system is functioning properly, but system notice has occurred.</td>
</tr>
<tr>
<td>Informational</td>
<td>6</td>
<td>Provides device information.</td>
</tr>
<tr>
<td>Debug</td>
<td>7</td>
<td>Provides detailed information about the log. If a Debug error occurs, contact Dell Online Technical Support</td>
</tr>
</tbody>
</table>

The Global Log Parameters page contains fields for defining which events are recorded to which logs. It contains fields for enabling logs globally, and parameters for defining log parameters. The Severity log messages are listed from the highest severity to the lowest. To open the Global Log Parameters page, click System → Logs → Global Parameters in the tree view.
Logging — Enables device global logs for Cache, File, and Server Logs. Console logs are enabled by default.

Severity — The following are the available severity logs:

Emergency — The highest warning level. If the device is down or not functioning properly, an emergency log message is saved to the specified logging location.

Alert — The second highest warning level. An alert log is saved if there is a serious device malfunction, for example, all device features are down.

Critical — The third highest warning level. A critical log is saved if a critical device malfunction occurs, for example, two device ports are not functioning, while the rest of the device ports remain functional.

Error — A device error has occurred, for example, if a single port is offline.

Warning — The lowest level of a device warning. The device is functioning, but an operational problem has occurred.

Notice — Provides device information.

Informational — Provides device information.

Debug — Provides debugging messages.

NOTE: When a severity level is selected, all severity level choices above the selection are selected automatically.
The **Global Log Parameters** page also contains check boxes which correspond to a distinct logging system:

- **Console** — The minimum severity level from which logs are sent to the console.
- **RAM Logs** — The minimum severity level from which logs are sent to the Log File kept in RAM (Cache).
- **Log File** — The minimum severity level from which logs are sent to the Log File kept in FLASH memory.

**Enabling Logs:**

1. Open the **Global Log Parameters** page.
2. Select **Enable** in the **Logging** drop-down list.
3. Select the log type and log severity in the **Global Log Parameters** check boxes.
4. Click **Apply Changes**.

   The log settings are saved, and the device is updated.
Enabling Logs Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the Global Log Parameters page.

Table 6-22. Global Log Parameters CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>logging on</strong></td>
<td>Enables error message logging.</td>
</tr>
<tr>
<td>**logging (ip-address</td>
<td>Logs messages to a syslog server. For a list of the hostname) [port port] [severity level] [facility facility] [description text]**</td>
</tr>
<tr>
<td><strong>logging console level</strong></td>
<td>Limits messages logged to the console based on severity.</td>
</tr>
<tr>
<td><strong>logging buffered level</strong></td>
<td>Limits syslog messages displayed from an internal buffer (RAM) based on severity.</td>
</tr>
<tr>
<td><strong>logging file level</strong></td>
<td>Limits syslog messages sent to the logging file based on severity.</td>
</tr>
<tr>
<td><strong>clear logging</strong></td>
<td>Clears logs.</td>
</tr>
<tr>
<td><strong>clear logging file</strong></td>
<td>Clears messages from the logging file.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```plaintext
Console (config)# logging on
Console (config)# logging console errors
Console (config)# logging buffered debugging
Console (config)# logging file alerts
Console (config)# clear logging
Console (config)# exit
Console# clear logging file
Clear Logging File [y/n]y
```
Displaying RAM Log Table

The RAM Log Table contains information about log entries kept in RAM, including the time the log was entered, the log severity, and a description of the log. To open the RAM Log Table, click System→Logs→RAM Log in the tree view.

Figure 6-30. RAM Log Table

<table>
<thead>
<tr>
<th>Log Index</th>
<th>The log number in the RAM Log Table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Time</td>
<td>Specifies the time at which the log was entered into the RAM Log Table.</td>
</tr>
<tr>
<td>Severity</td>
<td>Specifies the log severity.</td>
</tr>
<tr>
<td>Description</td>
<td>The user-defined log description.</td>
</tr>
</tbody>
</table>

Removing Log Information:

1. Open the RAM Log Table.
2. Click Clear Log.
The log information is removed from the **RAM Log Table**, and the device is updated.
Viewing and Clearing the RAM Log Table Using the CLI Commands

The following table summarizes the equivalent CLI commands for viewing and clearing fields displayed in the RAM Log Table.

Table 6-23. RAM Log Table CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging</td>
<td>Displays the state of logging and the syslog messages stored in the internal buffer.</td>
</tr>
<tr>
<td>clear logging</td>
<td>Clears logs.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console# show logging
Logging is enabled.
Console Logging: Level info. Console Messages: 0 Dropped.
Buffer Logging: Level info. Buffer Messages: 26 Logged, 26 Displayed, 200 Max.
1 messages were not logged
01-Jan-2000 01:03:42 :%INIT-I-Startup: Cold Startup
01-Jan-2000 01:01:36 :%LINK-W-Down: g24
01-Jan-2000 01:01:36 :%LINK-W-Down: g23
01-Jan-2000 01:01:36 :%LINK-W-Down: g22
01-Jan-2000 01:01:36 :%LINK-W-Down: g21
01-Jan-2000 01:01:36 :%LINK-W-Down: g20
01-Jan-2000 01:01:36 :%LINK-W-Down: g19
01-Jan-2000 01:01:36 :%LINK-W-Down: g18
01-Jan-2000 01:01:36 :%LINK-W-Down: g17
01-Jan-2000 01:01:36 :%LINK-W-Down: g13
1-Jan-2000 01:01:36 :%LINK-W-Down: g2
01-Jan-2000 01:01:36 :%LINK-W-Down: g1

01-Jan-2000 01:01:32 :%INIT-I-InitCompleted: Initialization task is completed

Console # clear logging

clear logging buffer [y/n]?

Console #
```

**Displaying the Log File Table**

The Log File Table contains information about log entries saved to the Log File in FLASH,
including the time the log was entered, the log severity, and a description of the log message. To open the Log File Table, click System→Logs→Log File in the tree view.

Figure 6-31.  Log File Table

Log Index — The log number in the Log File Table.
Log Time — Specifies the time at which the log was entered in the Log File Table.
Severity — Specifies the log severity.
Description — The log message text.
Displaying the Log File Table Using the CLI Commands

The following table summarizes the equivalent CLI commands for viewing and setting fields displayed in the Log File Table.

Table 6-24. Log File Table CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging file</td>
<td>Displays the logging state and the syslog messages stored in the logging file.</td>
</tr>
<tr>
<td>clear logging file</td>
<td>Clears messages from the logging file.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
Console # show logging file
Logging is enabled.
Console Logging: Level info. Console Messages: 0 Dropped.
SysLog server 1.1.1.1 Logging: info. Messages: 0 Dropped.
1 messages were not logged
01-Jan-2000 01:12:01 :%COPY-W-TRAP: The copy operation was completed successfully
01-Jan-2000 01:11:49 :%LINK-I-Up: g21
01-Jan-2000 01:11:49 :%2SWPHY-I-CHNGCOMBOMEDIA: Media changed from copper media to fiber media (1000BASE-SX) on port g21.
01-Jan-2000 01:11:48 :%2SWPHY-I-CHNGCOMBOMEDIA: Media changed from fiber media to copper media on port g21.
01-Jan-2000 01:11:48 :%LINK-W-Down: g21
01-Jan-2000 01:11:46 :%LINK-I-Up: g19
01-Jan-2000 01:11:42 :%LINK-W-Down: g14
01-Jan-2000 01:11:41 :%LINK-I-Up: g14
01-Jan-2000 01:11:36 :%LINK-W-Down: g9
01-Jan-2000 01:11:35 :%LINK-I-Up: g1
01-Jan-2000 01:11:34 :%LINK-W-Down: g1
console#
```
Configuring the Remote Log Server Settings Page

The Remote Log Server Settings page contains fields for viewing and configuring the available Log Servers. In addition, new log servers can be defined, and the log severity sent to each server. To open the Remote Log Server Settings page, click System→Logs→Remote Log Server in the tree view.

Figure 6-32. Remote Log Server Settings

Available Servers — Contains a list of servers to which logs can be sent.

UDP Port (1-65535) — The UDP port to which the logs are sent for the selected server. The possible range is 1 - 65535. The default value is 514.

Facility — Defines a user-defined application from which system logs are sent to the remote server. Only one facility can be assigned to a single server. If a second facility level is assigned, the first facility level is overridden. All applications defined for a device utilize the same facility on a server. The possible field values are:

Local 0 - Local 7.
Description (0-64 Characters) — The user-defined server description.

Delete Server — Deletes the currently selected server from the Available Servers list, when selected.

The Remote Log Server Settings page also contains a severity list. The severity definitions are the same as the severity definitions in the Global Log Parameters page.

Sending Logs to a Server:
1. Open the Remote Log Server Settings page.
2. Select a server from the Available Servers drop-down list.
3. Define the fields.
4. Select the log severity in the Severity to Include check boxes.
5. Click Apply Changes.
   The log settings are saved, and the device is updated.

Defining a New Server:
1. Open the Remote Log Server Settings page.
2. Click Add.
   The Add a Log Server page opens:

Figure 6-33. Add a Log Server
New Log Server IP Address — Defines the IP address of the new Log Server.

3 Define the fields.
4 Click Apply Changes.
   The server is defined and added to the Available Servers list.

Displaying the Remote Log Servers Table:
1 Open the Remote Log Server Settings page.
2 Click Show All.
   The Remote Log Servers Table page opens:

   Figure 6-34. Remote Log Servers Table

Removing a Log Server from the Log Server Table Page:
1 Open the Remote Log Server Settings page.
2 Click Show All.
   The Remote Log Servers Table page opens.
3 Select a Remote Log Servers Table entry.
4 Select the Remove check box to remove the server(s).
5 Click Apply Changes.
   The Remote Log Servers Table entry is removed, and the device is updated.
Working with Remote Server Logs Using the CLI Commands

The following table summarizes the equivalent CLI command for working with remote server logs.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging (ip-address</td>
<td>Logs messages to a remote server.</td>
</tr>
<tr>
<td>(hostname)</td>
<td>[port port] [severity level] [facility facility] description text]</td>
</tr>
<tr>
<td>no logging</td>
<td>Deletes a syslog server.</td>
</tr>
<tr>
<td>show logging</td>
<td>Displays the state of logging and the syslog messages.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
console> enable
console# configure
console (config) # logging 10.1.1.1 severity critical

Console# show logging
Logging is enabled.
Buffer Logging: Level debug. Buffer Messages: 16 Logged, 16 Displayed, 200 Max.
SysLog server 5.2.2.2 Logging: info. Messages: 0 Dropped.
SysLog server 10.2.2.2 Logging: critical. Messages: 21 Dropped.
1 messages were not logged
03-Mar-2004 12:02:03 :%LINK-I-Up: g1
03-Mar-2004 12:02:01 :%LINK-W-Down: g2
03-Mar-2004 12:02:01 :%LINK-I-Up: g3
```
Defining Device IP Addresses

The IP Addressing page contains links for assigning interface and default gateway IP addresses, and defining ARP and DHCP parameters for the interfaces. To open the IP Addressing page, click System → IP Addressing in the tree view.

Defining Default Gateways

The Default Gateway page contains fields for assigning Gateway devices. Packets are forwarded to the default IP when frames are sent to a remote network. The configured IP address must belong to the same IP address subnet of one of the IP interfaces. To open the Default Gateway page, click System → IP Addressing → Default Gateway in the tree view.

The Default Gateway page contains the following fields:

- **Default Gateway** — The Gateway device IP address.
- **Remove** — Removes Gateway devices from the Default Gateway drop-down list, when selected

**Selecting a Gateway Device:**

1. Open the Default Gateway page.
2. Select an IP address in the Default Gateway drop-down list.
3. Select the Active check box.
4. Click Apply Changes.
   
   The gateway device is selected and the device is updated.

**Removing a Default Gateway Device:**

1. Open the Default Gateway page.
2. Select the Remove check box to remove default gateways.
3. Click Apply Changes.

   The default gateway entry is removed, and the device is updated.

Defining Gateway Devices Using the CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the Default Gateway page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip default-gateway</code></td>
<td>Defines a default gateway.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td></td>
</tr>
<tr>
<td><code>no ip default-gateway</code></td>
<td>Removes a default gateway.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
Console (config)# ip default-gateway 196.210.10.1
Console (config)# no ip default-gateway
```

## Defining IP Interfaces

The **IP Interface Parameters** page contains fields for assigning IP parameters to interfaces. To open the **IP Interface Parameters** page, click **System**→**IP Addressing**→**Interface Parameters** in the tree view.

![IP Interface Parameters](image)

**IP Address** — The interface IP address.

**Prefix Length** — The number of bits that comprise the source IP address prefix, or the network mask of the source IP address.

**Interface** — The interface type for which the IP address is defined. Select **Port**, **LAG**, or **VLAN**. For more information, see "Configuring VLANs".

**Type** — Indicates whether or not the IP address was configured statically.

**Forward Directed IP Broadcasts** — Enables the translation of a directed broadcast to physical broadcasts. Disabling drops IP-directed broadcasts and does not forward them.

**Broadcast Type** — Defines an interface broadcast address.

- **One Fill** — The interface broadcast address is one fill (255.255.255.255).
- **Zero Fill** — The interface broadcast address is zero fill (0.0.0.0).
Remove — When selected, removes the interface from the IP Address drop-down menu.

**Adding an IP Interface**

1. Open the IP Interface Parameters page.
2. Click Add.
   The Add a Static Interface page opens:

   **Figure 6-36. Add a Static Interface**

3. Complete the fields on the page.
   Network Mask specifies the subnetwork mask of the source IP address.
4. Click Apply Changes.
   The new interface is added, and the device is updated.

**Modifying IP Address Parameters**

1. Open the IP Interface Parameters page.
2. Select an IP address in the IP Address drop-down menu.
3. Modify the required fields.
4. Click Apply Changes.
   The parameters are modified, and the device is updated.

**Deleting IP Addresses**

1. Open the IP Interface Parameters page.
2. Click Show All.
   The Interface Parameters Table opens:
3. Select an IP address and select the **Remove** check box.
4. Click **Apply Changes**.

The selected IP address is deleted, and the device is updated.
Defining IP Interfaces Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the IP Interface Parameters page.

**Table 6-27. IP Interface Parameters CLI Commands**

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip address ip-address {mask</td>
<td>Sets an IP address.</td>
</tr>
<tr>
<td>prefix-length}</td>
<td></td>
</tr>
<tr>
<td>no ip address [ip-address]</td>
<td>Removes an IP address</td>
</tr>
<tr>
<td>show ip interface [ethernet</td>
<td>Displays the usability status of interfaces</td>
</tr>
<tr>
<td>interface-number</td>
<td>vlan vlan-</td>
</tr>
<tr>
<td>id / port-channel number]</td>
<td></td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# interface vlan 1
Console (config-if)# ip address 131.108.1.27 255.255.255.0
Console (config-if)# no ip address 131.108.1.27
Console (config-if)# exit
console# show ip interface vlan 1
```

Defining DHCP IP Interface Parameters

```
console# show ip interface vlan 1
```

Output
The **DHCP IP Interface** page contains fields for specifying the DHCP clients connected to the device. Click **System→IP Addressing→DHCP IP Interface** in the tree view. To open the **DHCP IP Interface** page.

**Figure 6-38. DHCP IP Interface**

<table>
<thead>
<tr>
<th>Gateway IP Address</th>
<th>Activity status</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1</td>
<td>Active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP address</th>
<th>Interface</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.123/24</td>
<td>VLAN 1</td>
<td>Static</td>
</tr>
</tbody>
</table>
Configuring System Information

**Interface** — The specific interface connected to the device. Click the option button next to Port, LAG, or VLAN and select the interface connected to the device.

**Host Name** — The system name. This field can contain up to 20 characters.

**Remove** — When selected, removes DHCP clients.

### Adding DHCP Clients

1. Open the DHCP IP Interface page.
2. Click Add. The Add DHCP IP Interface page opens.
3. Complete the information on the page.
4. Click Apply Changes. The DHCP Interface is added, and the device is updated.

### Modifying a DHCP IP Interface

1. Open the DHCP IP Interface page.
2. Modify the fields.
3. Click Apply Changes. The entry is modified, and the device is updated.

### Deleting a DHCP IP Interface

1. Open the DHCP IP Interface page.
2 Click Show All.
   The DHCP Client Table opens.
3 Select a DHCP client entry.
4 Select the Remove check box.
5 Click Apply Changes.
   The selected entry is deleted, and the device is updated.

**Defining DHCP IP Interfaces Using CLI Commands**

The following table summarizes the equivalent CLI commands for defining DHCP clients.

<table>
<thead>
<tr>
<th>CLI Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip address dhcp</td>
</tr>
<tr>
<td>[hostname host-name]</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

To acquire an IP address on an Ethernet interface from the Dynamic Host Configuration Protocol (DHCP).

console> enable
console# config
console (config#) interface ethernet g1
console (config-if)# ip address dhcp 10.0.0.1 /8
Configuring Domain Name Systems

Domain Name System (DNS) converts user-defined domain names into IP addresses. Each time a domain name is assigned the DNS service translates the name into a numeric IP address. For example, www.ipexample.com is translated to 192.87.56.2. DNS servers maintain domain name databases and their corresponding IP addresses.

The Domain Naming System (DNS) page contains fields for enabling and activating specific DNS servers. To open the Domain Naming System (DNS) page, click System→IP Addressing→Domain Name System in the tree view.

Figure 6-39. Domain Naming System (DNS)

DNS Status — Enables or disables translating DNS names into IP addresses.
DNS Server — Contains a list of DNS servers. DNS servers are added in the Add DNS Server page.
DNS Server Currently Active — The DNS server that is currently the active DNS server.
Set DNS Server Active — Activates the DNS server selected in the DNS Server field.
Remove DNS Server — When selected, removes DNS Servers.

Adding a DNS Server

1. Open the Domain Naming System (DNS) page.
2. Click Add.
   The Add DNS Server page opens:
3 Define the relevant fields.
4 Click Apply Changes.
   The new DNS server is defined, and the device is updated.

Displaying the DNS Servers Table
1 Open the Domain Naming System (DNS) page.
2 Click Show All.
   The DNS Server Table opens:

Removing DNS Servers
1 Open the Domain Naming System (DNS) page.
2 Click Show All.
3 The DNS Server Table opens.
4 Select a DNS Server Table entry.
5 Select the Remove check box.
6 Click Apply Changes.
   The selected DNS server is deleted, and the device is updated.
**Configuring DNS Servers Using the CLI Commands**

The following table summarizes the CLI commands for configuring device system information.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip name-server server-address</code></td>
<td>Sets the available name servers. Up to eight name servers can be set.</td>
</tr>
<tr>
<td><code>no ip name-server server-address</code></td>
<td>Removes a name server.</td>
</tr>
<tr>
<td><code>ip domain-name name</code></td>
<td>Defines a default domain name that the software uses to complete unqualified host names.</td>
</tr>
<tr>
<td>`clear host {name</td>
<td>*}`</td>
</tr>
<tr>
<td><code>show hosts [name]</code></td>
<td>Displays the default domain name, list of name server hosts, the static and the cached list of host names and addresses.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console> enable
Console# configure
console (config)# ip name-server 176.16.1.18
```

**Defining Default Domains**

The Default Domain Name page provides information for defining default DNS domain names. To open the Default Domain Name page, click System→IP Addressing→Default Domain Name in the tree view.

**Figure 6-42. Default Domain Name**

Default Domain Name (1-158 characters) — Contains a user-defined DNS domain name server. When selected, the DNS domain name is the default domain.

Type — The domain type if the domain was statically or dynamically created.

Remove — When selected, removes a selected domain.

**Defining DNS Domain Names Using the CLI Commands**

The following table summarizes the CLI commands for configuring DNS domain names.
The following is an example of the CLI commands:

```plaintext
console> enable
console# configure
console (config)# ip domain-name www.dell.com
```
Mapping Domain Host

The Host Name Mapping page provides parameters for assigning static host names IP addresses. The Host Name Mapping page provides up to eight IP addresses per host. To open the Host Name Mapping page, click System → IP Addressing → Host Name Mapping.

Figure 6-43. Host Name Mapping

Host Name — Contains a Host Name list. Host Name are defined in the Add Host Name Mapping page. Each host provides up to eight IP address. The field values for the Host Name field are:

IP Address (X.X.X.X) — Provides up to eight IP addresses that are assigned to the specified host name.

Type — The IP address type. The possible field values are:

  Dynamic — The IP address was created dynamically.

  Static — The IP address is a static IP address.

Remove Host Name Mapping — When checked, removes the DNS Host Mapping.

Adding Host Domain Names

1. Open the Host Name Mapping page.
2. Click Add.

   The Add Host Name Mapping page opens:

Host Name — Contains a Host Name list. Host Name are defined in the Add Host Name Mapping page. Each host provides up to eight IP address. The field values for the Host Name field are:

IP Address (X.X.X.X) — Provides up to eight IP addresses that are assigned to the specified host name.

Type — The IP address type. The possible field values are:

  Dynamic — The IP address was created dynamically.

  Static — The IP address is a static IP address.

Remove Host Name Mapping — When checked, removes the DNS Host Mapping.
3 Define the relevant fields.
4 Click Apply Changes.
   The IP address is mapped to the Host Name, and the __________ is updated.

**Displaying the Hosts Name Mapping Table**
1 Open the Host Name Mapping page.
2 Click Show All.
   The Hosts Name Mapping Table opens:

**Removing Host Name from IP Address Mapping**
1 Open the Host Name Mapping page.
2 Click Show All
3 The Host Mapping Table opens.
4 Select a Host Mapping Table entry.
5 Check the Remove checkbox.
6 Click Apply Changes.
   The Host Mapping Table entry is deleted, and the __________ is updated.
Mapping IP address to Domain Host Names Using the CLI Commands

The following table summarizes the equivalent CLI commands for mapping Domain Host names to IP addresses.

**Table 6-31. Domain Host Name CLI Commands**

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip host name address1 [address2 … address8]</td>
<td>Defines the static host name-to-address mapping in the host cache</td>
</tr>
<tr>
<td>no ip host name</td>
<td>Removes the name-to-address mapping.</td>
</tr>
<tr>
<td>clear host {name</td>
<td>*}</td>
</tr>
<tr>
<td>show hosts [name]</td>
<td>Displays the default domain name, list of name server hosts, the static and the cached list of host names and addresses.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
console# enable

console# configure

console (config)# ip host accounting.abc.com 176.10.23.1
```

Configuring ARP

The Address Resolution Protocol (ARP) is a TCP/IP protocol that converts IP addresses into physical addresses. The static entries can be defined in the ARP Table. When static entries are defined, a permanent entry is entered and used to translate IP addresses to MAC addresses. To open the ARP Settings page, click **System → IP Addressing → ARP** in the tree view.
Global Settings — Select this option to activate the fields for ARP global settings.

ARP Entry Age Out (1-40000000) — For all devices, the amount of time (seconds) that pass between ARP requests about an ARP table entry. After this period, the entry is deleted from the table. The range is 1 - 40000000, where zero indicates that entries are never cleared from the cache. The default value is 60000 seconds.

Clear ARP Table Entries — The type of ARP entries that are cleared on all devices. The possible values are:

- None — ARP entries are not cleared.
- All — All ARP entries are cleared.
- Dynamic — Only dynamic ARP entries are cleared.
- Static — Only static ARP entries are cleared.

ARP Entry — Select this option to activate the fields for ARP settings on a single device.

Interface — The interface number of the port, LAG, or VLAN that is connected to the device.

IP Address — The station IP address, which is associated with the MAC address filled in below.

MAC Address — The station MAC address, which is associated in the ARP table with the IP address.

Status — The ARP Table entry status. Possible field values are:

- Dynamic — The ARP entry is learned dynamically.
- Static — The ARP entry is a static entry.
Remove ARP Entry — When selected, removes an ARP entry.

Adding a Static ARP Table Entry:
1. Open the ARP Settings page.
2. Click Add.
   The Add ARP Entry page opens:

Figure 6-47. Add ARP Entry Page

3. Select an interface.
4. Define the fields.
5. Click Apply Changes.
   The ARP Table entry is added, and the device is updated.
Displaying the ARP Table
1. Open the ARP Settings page.
2. Click Show All.
   The ARP Table opens:

Figure 6-48. ARP Table Page

Deleting ARP Table Entry
1. Open the ARP Settings page.
2. Click Show All.
   The ARP Table page opens.
3. Select a table entry.
4. Select the Remove check box.
5. Click Apply Changes.
   The selected ARP Table entry is deleted, and the device is updated.
Configuring ARP Using the CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the ARP Settings page.

Table 6-32. ARP Settings CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arp ip_addr hw_addr</code></td>
<td>Adds a permanent entry in the ARP cache.</td>
</tr>
<tr>
<td>`{ ethernet interface-number</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td><code>arp timeout seconds</code></td>
<td>Configures how long an entry remains in the ARP cache.</td>
</tr>
<tr>
<td><code>clear arp-cache</code></td>
<td>Deletes all dynamic entries from the ARP cache</td>
</tr>
<tr>
<td><code>show arp</code></td>
<td>Displays entries in the ARP Table.</td>
</tr>
<tr>
<td><code>no arp</code></td>
<td>Removes an ARP entry from the ARP Table.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console(config)# arp 198.133.219.232 00-00-0c-40-0f-bc
Console (config)# exit
Console# arp timeout 12000
Console# show arp
ARP timeout: 80000 Seconds

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP address</th>
<th>HW address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>10.7.1.102</td>
<td>00:10:B5:04:DB:4B</td>
<td>Dynamic</td>
</tr>
<tr>
<td>g2</td>
<td>10.7.1.135</td>
<td>00:50:22:00:2A:A4</td>
<td>Static</td>
</tr>
</tbody>
</table>
```
Running Cable Diagnostics

The Diagnostics page contains links to pages for performing virtual cable tests on copper and fiber optics cables. To open the Diagnostics page, click System→Diagnostics in the tree view.

Viewing Copper Cable Diagnostics

The Integrated Cable Test for Copper Cables page contains fields for performing tests on copper cables. Cable testing provides information about where errors occurred in the cable, the last time a cable test was performed, and the type of cable error which occurred. The tests use Time Domain Reflectometry (TDR) technology to test the quality and characteristics of a copper cable attached to a port. Cables up to 120 meters long can be tested. Cables are tested when the ports are in the down state, with the exception of the Approximated Cable Length test.

To open the Integrated Cable Test for Copper Cables page, click System→Diagnostics→Integrated Cable Test in the tree view.

Figure 6-49. Integrated Cable Test for Copper Cables

Port — The port to which the cable is connected.

Test Result — The cable test results. Possible values are:

  - No Cable — There is no cable connected to the port.
  - Open Cable — The cable is connected on only one side.
  - Short Cable — A short has occurred in the cable.
  - OK — The cable passed the test.
  - Fiber Cable — A fiber cable is connected to the port.
Cable Fault Distance — The distance from the port where the cable error occurred.

Last Update — The last time the port was tested.

Approximate Cable Length — The approximate cable length. This test can only be performed when the port is up and operating at 1 Gbps.

Performing a Cable Test

1. Ensure that both ends of the copper cable are connected to a device.
2. Open the Integrated Cable Test for Copper Cables page.
3. Click Test Now.
   The copper cable test is performed, and the results are displayed on the Integrated Cable Test for Copper Cables page.

Displaying Virtual Cable Test Results Table

1. Open the Integrated Cable Test for Copper Cables page.
2. Click Show All.
   The Virtual Cable Test Results Table opens.
Performing Copper Cable Tests Using CLI Commands

The following table summarizes the equivalent CLI commands for performing copper cable tests.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>test copper-port tdr [interface]</code></td>
<td>Performs VCT tests.</td>
</tr>
<tr>
<td><code>show copper-port tdr [interface]</code></td>
<td>Shows results of last VCT tests on ports.</td>
</tr>
<tr>
<td><code>show copper-port cable-length [interface]</code></td>
<td>Displays the estimated copper cable length attached to a port.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
console> enable
Console# test copper-port tdr g3
Cable is open at 100 meters.
Console> show copper-ports tdr
<table>
<thead>
<tr>
<th>Port</th>
<th>Result</th>
<th>Length [meters]</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g2</td>
<td>Short</td>
<td>50</td>
<td>13:32:00 15 January 2004</td>
</tr>
<tr>
<td>g3</td>
<td>Test has not been performed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g4</td>
<td>Open</td>
<td>64</td>
<td>13:32:00 15 January 2004</td>
</tr>
<tr>
<td>g5</td>
<td>Fiber</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
```

**NOTE:** The cable length returned is an approximation in the ranges of up to 50 meters, 50m-80m, 80m-110m, 110m-120m, or more than 120m. The deviation may be up to 20 meters.

Viewing Optical Transceiver Diagnostics

The Optical Transceiver Diagnostics page contains fields for performing tests on Fiber Optic cables. To open the Optical Transceiver Diagnostics page, click **System→Diagnostics→Optical Transceiver Diagnostics** in the tree view.

**NOTE:** Optical transceiver diagnostics can be performed only when the link is present.
Port — The port to which the fiber cable is connected.
Temperature — The temperature (in Celsius) at which the cable is operating.
Voltage — The voltage at which the cable is operating.
Current — The current at which the cable is operating.
Output Power — The rate at which the output power is transmitted.
Input Power — The rate at which the input power is transmitted.
Transmitter Fault — Indicates if a fault occurred during transmission.
Loss of Signal — Indicates if a signal loss occurred in the cable.
Data Ready — The transceiver has achieved power up and data is ready.

Displaying Optical Transceiver Diagnostics Test Results Table
1. Open the Optical Transceiver Diagnostics page.
2. Click Show All.
   The test is run and the Virtual Cable Test Results Table opens.

Performing Fiber Optic Cable Tests Using CLI Commands
The following table summarizes the equivalent CLI command for performing fiber optic cable tests.
The following is an example of the CLI command:

```
console> enable
Console# show fiber-ports optical-transceiver
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Temp</th>
<th>Voltage</th>
<th>Current</th>
<th>Output</th>
<th>Input</th>
<th>TX</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C)</td>
<td>(Volt)</td>
<td>(mA)</td>
<td>(mWatt)</td>
<td>(mWatt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g1</td>
<td>W</td>
<td>OK</td>
<td>E</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>g2</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>E</td>
<td>OK</td>
</tr>
<tr>
<td>g3</td>
<td>Copper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temp – Internally measured transceiver temperature.
Voltage – Internally measured supply voltage.
Current – Measured TX bias current.
Output Power – Measured TX output power.
Input Power – Measured RX received power.
Tx Fault – Transmitter fault
LOS – Loss of signal

The Optical Transceiver Diagnostics Table contains the following columns:

- **Temp** — Internally measured transceiver temperature.
- **Voltage** — Internally measured supply voltage.
- **Current** — Measured TX bias current.
- **Output Power** — Measured TX output power in milliwatts.
- **Input Power** — Measured RX received power in milliwatts.
- **TX Fault** — Transmitter fault.

**NOTE:** Finisair transceivers do not support the transmitter fault diagnostic testing.
• **LOS** — Loss of signal.
• **Data Ready** — The transceiver has archived power up and data is ready.
• **N/A** — Not Available, N/S - Not Supported, W - Warning, E - Error.

**NOTE:** Fiber Optic analysis feature works only on SFPs that support the digital diagnostic standard SFF-4872.
Managing Device Security

The Management Security page provides access to security pages that contain fields for setting security parameters for ports, device management methods, user, and server security. To open the Management Security page, click System→Management Security in the tree view.

Defining Access Profiles

The Access Profiles page contains fields for defining profiles and rules for accessing the device. Access to management functions can be limited to user groups, which are defined by ingress interfaces and source IP address and/or source IP subnets.

Management access can be separately defined for each type of management access method, including, Web (HTTP), Secure web (HTTPS), Telnet, Secure Telnet and SNMP.

Access to different management methods may differ between user groups. For example, User Group 1 can access the device only via an HTTPS session, while User Group 2 can access the device via both HTTPS and Telnet sessions.

Management Access Lists contain the rules that determine which users can manage the device, and by which methods. Users can also be blocked from accessing the device.

The Access Profiles page contains fields for configuring Management Lists and applying them to specific interfaces. To open the Access Profiles page, click System→Management Security→Access Profiles in the tree view.

Figure 6-51. Access Profiles
Access Profile — User-defined Access Profile lists. The Access Profile list contains a default value of Console List, to which user-defined access profiles are added. Selecting Console Only as the Access Profile name disconnects the session, and enables accessing the device from the console only.

Current Active Access Profile — The access profile that is currently active.

Set Access Profile Active — Activates an access profile.

Remove — Removes an access profile from the Access Profile Name list, when selected.

Activating a Profile

1. Open the Access Profiles page.
2. Select an Access Profile in the Access Profile field.
3. Select the Set Access Profile Active check box.
4. Click Apply Changes.
   The Access Profile is activated.

Adding an Access Profile

Rules act as filters for determining rule priority, the device management method, interface type, source IP address and network mask, and the device management access action. Users can be blocked or permitted management access. Rule priority sets the order of rule application in a profile.

Defining Rules for an Access Profile:

1. Open the Access Profiles page.
2. Click Add an Access Profile.
   The Add An Access Profile page opens:
Access Profile Name (1-32 Characters) — User-defined name for the access profile.

Rule Priority (1-65535) — The rule priority. When the packet is matched to a rule, user groups are either granted or denied device management access. The rule order is set by defining a rule number within the Profile Rules Table. The rule number is essential to matching packets to rules, as packets are matched on a first-fit basis. The rule priorities are assigned in the Profile Rules Table.

Management Method — The management method for which the access profile is defined. Users with this access profile can access the device using the management method selected.

Interface — The interface type to which the rule applies. This is an optional field. This rule can be applied to a selected port, LAG, or VLAN by selecting the check box and selecting the appropriate option button and interface.

NOTE: Assigning an access profile to an interface denies access via other interfaces. If an access profile is not assigned to any interface, the device can be accessed by all interfaces.

Source IP Address — The interface source IP address for which the rule applies. This is an optional field and indicates that the rule is valid for a subnetwork.

Network Mask — The IP subnetwork mask.

Prefix Length — The number of bits that comprise the source IP address prefix, or the network mask of the source IP address.

Action — Defines whether to permit or deny management access to the defined interface.

3 Define the Access Profile Name field.

4 Define the relevant fields.

5 Click Apply Changes.

The new Access Profile is added, and the device is updated.
Adding Rules to Access Profile

**NOTE:** The first rule must be defined to beginning matching traffic to access profiles.

1. Open the Access Profiles page.
2. Click Add Profile to Rule.

   The Add An Access Profile Rule page opens:

### Figure 6-53. Add An Access Profile Rule

![Add an Access Profile Rule](image)

3. Complete the fields.
4. Click Apply Changes.

   The rule is added to the access profile, and the device is updated.

Viewing the Profile Rules Table:

**NOTE:** The order in which rules appear in the Profile Rules Table is important. Packets are matched to the first rule which meets the rule criteria.

1. Open the Access Profiles page.
2. Click Show All.

   The Profile Rules Table Page opens:
Removing a Rule

1. Open the Access Profiles page.
2. Click Show All.
   The Profile Rules Table opens.
3. Select a rule.
4. Select the Remove check box.
5. Click Apply Changes.
   The selected rule is deleted, and the device is updated.

Defining Access Profiles Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the Access Profiles page.

Table 6-35. Access Profiles CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>management access-list name</td>
<td>Defines an access-list for management, and enters the access-list context for configuration.</td>
</tr>
<tr>
<td>permit [ethernet interface-number</td>
<td>vlan vlan-id / port-channel number] [service service]</td>
</tr>
<tr>
<td>permit ip-source ip-address [mask mask</td>
<td>prefix-length] [ethernet interface-number</td>
</tr>
<tr>
<td>CLI Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>deny [ethernet interface-number</td>
<td>Sets port denying conditions for the management access list, and the selected management method.</td>
</tr>
<tr>
<td>] vlan vlan-id / port-channel number] [service service]</td>
<td></td>
</tr>
<tr>
<td>deny ip-source ip-address [mask mask</td>
<td>Sets port denying conditions for the management access list, and the selected management method.</td>
</tr>
<tr>
<td>] prefix-length] [ethernet interface-number</td>
<td></td>
</tr>
<tr>
<td>] vlan vlan-id / port-channel number] [service service]</td>
<td></td>
</tr>
<tr>
<td>management access-class {console-only</td>
<td>Defines which access-list is used as the active management connections.</td>
</tr>
<tr>
<td>] name}</td>
<td></td>
</tr>
<tr>
<td>show management access-list [name]</td>
<td>Displays the active management access-lists.</td>
</tr>
<tr>
<td>show management access-class</td>
<td>Displays information about management access-class.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
Console (config)# management access-list mlist
Console (config-macl)# permit ethernet g1
Console (config-macl)# permit ethernet g9
Console (config-macl)# deny ethernet g2
Console (config-macl)# deny ethernet g10
Console (config-macl)# exit
Console (config)# management access-class mlist
Console (config)# exit
Console# show management access-list
mlist

permit ethernet g1
permit ethernet g9
! (Note: all other access implicitly denied)
Console> show management access-class
Management access-class is enabled, using access list mlist
```

**Defining Authentication Profiles**

The Authentication Profiles page contains fields for selecting the user authentication method on the device. User authentication occurs:

- Locally
- Via an external server
User authentication can also be set to None.

User authentication occurs in the order the methods are selected. For example, if both the Local and RADIUS options are selected, the user is authenticated first locally. If the local user database is empty, the user is then authenticated via the RADIUS server.

If an error occurs during the authentication, the next selected method is used. To open the Authentication Profiles page, click System→Management Security→Authentication Profiles in the tree view.

**Figure 6-55. Authentication Profiles**

![Authentication Profiles](image)

**Authentication Profile Name** — User-defined authentication profile lists to which user-defined authentication profiles are added. The defaults are Network Default and Console Default.

**Optional Methods** — User authentication methods. Possible options are:

- **None** — No user authentication occurs.
- **Local** — User authentication occurs at the device level. The device checks the user name and password for authentication.
- **RADIUS** — User authentication occurs at the RADIUS server. For more information, see "Configuring RADIUS Global Parameters."
- **Line** — The line password is used for user authentication.
- **Enable** — The enable password is used for authentication.
- **TACACS+** — The user authentication occurs at the TACACS+ server.
- **Restore Default** — Restores the default user authentication method on the device.
Selecting an Authentication Profile:
1. Open the Authentication Profiles page.
2. Select a profile in the Authentication Profile Name field.
3. Select the authentication method using the navigation arrows.
4. Click Apply Changes.
   The user authentication profile is updated to the device.

Adding an Authentication Profile:
1. Open the Authentication Profiles page.
2. Click Add.
   The Add Authentication Method Profile Name page opens:

   ![Add Authentication Profile Page](image)

3. Configure the profile.
4. Click Apply Changes.
   The authentication profile is updated to the device.

Displaying the Show All Authentication Profiles Page:
1. Open the Authentication Profiles page.
2. Click Show All.
   The Authentication Profile page opens:
Deleting an Authentication Profiles:

1. Open the Authentication Profiles page.
2. Click Show All.
   The Authentication Profile page opens.
3. Select an authentication profile.
4. Select the Remove check box.
5. Click Apply Changes.
   The selected authenticating profile is deleted.

Configuring an Authentication Profile Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the Authentication Profiles page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa authentication login</td>
<td>Configures login authentication.</td>
</tr>
<tr>
<td>{default</td>
<td>list-name}</td>
</tr>
<tr>
<td>method1 [method2]</td>
<td></td>
</tr>
<tr>
<td>no aaa authentication login</td>
<td>Removes a login authentication profile.</td>
</tr>
<tr>
<td>{default</td>
<td>list-name}</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
Console (config)# aaa authentication login default radius local enable none
Console (config)# no aaa authentication login default
```

### Assigning Authentication Profiles

After Authentication Profiles are defined, the Authentication Profiles can be applied to Management Access methods. For example, console users can be authenticated by Authentication Method Lists 1, while Telnet users are authenticated by Authentication Method List 2. To open the Select Authentication page, click **System → Management Security → Select Authentication** in the tree view.

**Figure 6-58. Select Authentication**

---

**Console** — Authentication profiles used to authenticate console users.

**Telnet** — Authentication profiles used to authenticate Telnet users.

**Secure Telnet (SSH)** — Authentication profiles used to authenticate Secure Shell (SSH) users. SSH provides clients with secure and encrypted remote connections to a device.

**HTTP and Secure HTTP** — Authentication method used for HTTP access and Secure HTTP access, respectively. Possible field values are:

- **None** — No authentication method is used for access.
- **Local** — Authentication occurs locally.
- **RADIUS** — Authentication occurs at the RADIUS server.
TACACS+ — Authentication occurs at the TACACS+ server.

**Applying an Authentication List to Console Sessions**
1. Open the Select Authentication page.
2. Select an Authentication Profile in the **Console** field.
3. Click **Apply Changes**.
   Console sessions are assigned an Authentication List.

**Applying an Authentication Profile to Telnet Sessions**
1. Open the Select Authentication page.
2. Select an Authentication Profile in the **Telnet** field.
3. Click **Apply Changes**.
   Telnet sessions are assigned an Authentication List.

**Applying an Authentication Profile to Secure Telnet (SSH) Sessions**
1. Open the Select Authentication page.
2. Select an Authentication Profile in the **Secure Telnet (SSH)** field.
3. Click **Apply Changes**.
   Secure Telnet (SSH) sessions are assigned an Authentication Profile.

**Assigning HTTP Sessions an Authentication Sequence**
1. Open the Select Authentication page.
2. Select an authentication sequence in the **HTTP** field.
3. Click **Apply Changes**.
   HTTP sessions are assigned an authentication sequence.

**Assigning Secure HTTP Sessions an Authentication Sequence**
1. Open the Select Authentication page.
2. Select an authentication sequence in the **Secure HTTP** field.
3. Click **Apply Changes**.
   Secure HTTP sessions are assigned an authentication sequence.
Assigning Access Authentication Profiles or Sequences Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the Select Authentication page.

Table 6-37. Select Authentication CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable authentication [default</td>
<td>Specifies the authentication method list when accessing a higher privilege level from a remote</td>
</tr>
<tr>
<td></td>
<td>list-name]</td>
</tr>
<tr>
<td>login authentication [default</td>
<td>Specifies the login authentication method list for a remote Telnet or console.</td>
</tr>
<tr>
<td></td>
<td>list-name]</td>
</tr>
<tr>
<td>ip http authentication</td>
<td>Specifies authentication methods for HTTP servers.</td>
</tr>
<tr>
<td>method1 [method2]</td>
<td></td>
</tr>
<tr>
<td>ip https authentication</td>
<td>Specifies authentication methods for HTTPS servers.</td>
</tr>
<tr>
<td>method1 [method2]</td>
<td></td>
</tr>
<tr>
<td>show authentication methods</td>
<td>Displays information about the authentication methods.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:
Console (config-line)# enable authentication default
Console (config-line)# login authentication default
Console (config-line)# exit
Console (config)# ip http authentication radius local
Console (config)# ip https authentication radius local
Console (config)# exit

Console# show authentication methods
Login Authentication Method Lists
---------------------------------
Default: Radius, Local, Line
Console_Login: Line, None

Enable Authentication Method Lists
---------------------------------
Default: Radius, Enable
Console_Enable: Enable, None

<table>
<thead>
<tr>
<th>Line</th>
<th>Login Method List</th>
<th>Enable Method List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console</td>
<td>Console_Login</td>
<td>Console_Enable</td>
</tr>
<tr>
<td>Telnet</td>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td>SSH</td>
<td>Default</td>
<td>Default</td>
</tr>
</tbody>
</table>

HTTP: Radius, local
HTTPS: Radius, local
Dot1x: Radius
Defining the Local User Databases

The Local User Database page contains fields for defining users, passwords and access levels. To open the Local User Database page click System > Management Security > Local User Database in the tree view.

Figure 6-59. Local User Database

User Name — List of users.
Access Level — User access level. The lowest user access level is 1, and the highest user access level is 15.
Password (0-159 Characters) — User-defined password. Local user database passwords can have a maximum of 159 characters.
Confirm Password — Confirms the user-defined password.
Remove — When selected, removes users from the User Name list.

Assigning Access Rights to a User:

1. Open the Local User Database page.
2. Select a user in the User Name field.
3. Define the fields.
4. Click Apply Changes.

The user access rights and passwords are defined, and the device is updated.
Defining a New User:
1. Open the Local User Database page.
2. Click Add.
   The Add User page opens:

   ![Add User](image)

3. Define the fields.
4. Click Apply Changes.
   The new user is defined, and the device is updated.

Displaying the Local User Table:
1. Open the Local User Database page.
2. Click Show All.
   The Local User Table opens:

   ![Local User Table](image)

Deleting Users:
1. Open the Local User Database page.
2. Click Show All.
   The Local User Table opens.
3 Select a User Name.
4 Select the Remove check box.
5 Click Apply Changes.
   The selected user is deleted, and the device is updated.

Assigning Users Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the Local User Database page.

Table 6-38. Local User Database CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>username name [password [level level] [encrypted]]</td>
<td>Establishes a username-based authentication system.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# username bob password lee level 15
```
Defining Line Passwords

The Line Password page contains fields for defining line passwords for management methods. To open the Line Password page, click System → Management Security → Line Passwords in the tree view.

Figure 6-62. Line Password

Line Password for Console/Telnet/Secure Telnet (0-159 Characters) — The line password for accessing the device via a console, Telnet, or Secure Telnet session. Passwords can contain a maximum of 159 characters.

Confirm Password — Confirms the new line password. The password appears in the “*****” format.

Defining Line Passwords for Console Sessions

1. Open the Line Password page.
2. Define the Line Password for Console field.
3. Click Apply Changes.
   The line password for console sessions is defined, and the device is updated.

Defining Line Passwords for Telnet Sessions

1. Open the Line Password page.
2. Define the Line Password for Telnet field.
3. Click Apply Changes.
The line password for the Telnet sessions is defined, and the device is updated.

**Defining Line Passwords for Secure Telnet Sessions**

1. Open the Line Password page.
2. Define the Line Password for Secure Telnet field.
3. Click Apply Changes.

The line password for Secure Telnet sessions is defined, and the device is updated.

**Assigning Line Passwords Using CLI Commands**

The following table summarizes the equivalent CLI commands for setting fields displayed in the Line Password page.

**Table 6-39. Line Password CLI Commands**

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>password</code></td>
<td>Specifies a password on a line.</td>
</tr>
<tr>
<td><code>[encrypted]</code></td>
<td></td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

- `Console (config-line)# password dell`
Defining Enable Password

The Modify Enable Password page sets a local password to control access to Normal, Privilege, and Global Configuration. To open the Modify Enable Password page, click System → Management Security → Enable Passwords in the tree view.

Figure 6-63. Modify Enable Password

Select Enable Access Level — Access level associated with the enable password. Possible field values are 1-15.

Password (0-159 Characters) — The currently configured enable password. Enable passwords can contain a maximum of 159 characters.

Confirm Password — Confirms the new enable password. The password appears in the ***** format.

Defining a New Enable Password:

1. Open the Modify Enable Password page.
2. Define the relevant fields.
3. Click Apply Changes.

The new Enable password is defined, and the device is updated.

Assigning Enable Passwords Using CLI Commands
The following table summarizes the equivalent CLI commands for setting fields displayed in the Modify Enable Password page.

### Table 6-40. Modify Enable Password CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable password [level level]</code></td>
<td>Sets a local password to control access to user and privilege levels.</td>
</tr>
<tr>
<td><code>password [encrypted]</code></td>
<td></td>
</tr>
<tr>
<td><code>show users accounts</code></td>
<td>Displays information about the local user database.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# enable password level 15 secret
Console# show users accounts
Username Privilege
---------- ---------
secret 15
```

### Defining TACACS+ Settings

The devices provide Terminal Access Controller Access Control System (TACACS+) client support. TACACS+ provides centralized security for validation of users accessing the device. TACACS+ provides a centralized user management system, while still retaining consistency with RADIUS and other authentication processes. TACACS+ provides the following services:

- **Authentication** — Provides authentication during login and via user names and user-defined passwords.
- **Authorization** — Performed at login. Once the authentication session is completed, an authorization session starts using the authenticated user name. The TACACS server checks the user privileges.

The TACACS+ protocol ensures network integrity through encrypted protocol exchanges between the device and TACACS+ server. To open the TACACS+ Settings page, click System→Management Security→TACACS+ in the tree view.
Host IP Address — Specifies the TACACS+ Server IP address.
Priority (0-65535) — Specifies the order in which the TACACS+ servers are used. The default is 0.
Source IP Address — The device source IP address used for the TACACS+ session between the device and the TACACS+ server.
Key String (0-128 Characters) — Defines the authentication and encryption key for TACACS+ communications between the device and the TACACS+ server. This key must match the encryption used on the TACACS+ server.
Authentication Port (0-65535) — The port number through which the TACACS+ session occurs. The default is port 49.
Reply Timeout (1-30) (Sec) — The amount of time that passes before the connection between the device and the TACACS+ server times out. The field range is 1-30 seconds.
Status — The connection status between the device and the TACACS+ server. The possible field values are:
   Connected — There is currently a connection between the device and the TACACS+ server.
   Not Connected — There is not currently a connection between the device and the TACACS+ server.
Single Connection — Maintains a single open connection between the device and the TACACS+ server when selected.
The TACACS+ default parameters are user-defined defaults. The default settings are applied to newly defined TACACS+ servers. If default values are not defined, the system defaults are applied to the new TACACS+ new servers. The following are the TACACS+ defaults:

**Source IP Address** — The default device source IP address used for the TACACS+ session between the device and the TACACS+ server.

**Key String (0-128 Characters)** — The default authentication and encryption key for TACACS+ communication between the device and the TACACS+ server.

**Timeout for Reply (1-30)** — The default time that passes before the connection between the device and the TACACS+ times out.

**Adding a TACACS+ Server**

1. Open the TACACS+ Settings page.
2. Click Add.
   The Add TACACS+ Host page opens:

   ![Add TACACS+ Host](image)

3. Define the fields.
4. Click Apply Changes.
   The TACACS+ server is added, and the device is updated.

**Displaying the TACACS+ Table**

1. Open the TACACS+ Settings page.
2. Click Show All.
   The TACACS+ Table opens:

   ![TACACS+ Table](image)
Removing a TACACS+ Server

1. Open the TACACS+ Settings page.
2. Click Show All.
   The TACACS+ Table opens.
3. Select a TACACS+ Table entry.
4. Select the Remove check box.
5. Click Apply Changes.
   The TACACS+ server is removed, and the device is updated.

Defining TACACS+ Settings Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the TACACS+ Settings page.

**Table 6-41. TACACS+ CLI Commands**

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACACS-server host (ip-address</td>
<td>Specifies a TACACS+ host.</td>
</tr>
<tr>
<td></td>
<td>hostname) [single-connection] [port port-number] [timeout timeout]</td>
</tr>
<tr>
<td>[key key-string] [source source] [priority priority]</td>
<td></td>
</tr>
<tr>
<td>no TACACS-server host (ip-</td>
<td>Deletes a TACACS+ host.</td>
</tr>
<tr>
<td>address</td>
<td>hostname)</td>
</tr>
<tr>
<td>tacacs-server key key-string</td>
<td>Specifies the authentication and encryption key for all TACACS+ communications between the device and the TACACS+ server. This key must match the encryption used on the TACACS+ daemon. (Range: 0 - 128 characters.)</td>
</tr>
<tr>
<td>tacacs-server timeout timeout</td>
<td>Specifies the timeout value in seconds. (Range: 1 - 30.)</td>
</tr>
</tbody>
</table>
Table 6-41.  TACACS+ CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tacacs-server source-ip source</td>
<td>Specifies the source IP address. (Range: Valid IP Address.)</td>
</tr>
<tr>
<td>show TACACS [ip-address]</td>
<td>Displays configuration and statistics for a TACACS+ server.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
Console# show tacacs
Router Configuration

------------------------- -------------------------
IP address Status Port Single TimeOut Source IP Priority
------------------------- -------------------------
12.1.1.2 Not 49 Yes 1 12.1.1.1 1

Connected

Global values

TimeOut : 5

Router Configuration

Source IP : 0.0.0.0

console#
```

**Configuring RADIUS Global Parameters**

Remote Authorization Dial-In User Service (RADIUS) servers provide additional security for networks. RADIUS servers provide a centralized authentication method for:

- Telnet Access
- Web Access
- Console to Device Access

To open the RADIUS Settings page, click System → Management Security → RADIUS in the tree view.
IP Address — The list of Authentication Server IP addresses.

Priority (1-65535) — Specifies the server priority. The possible values are 1-65535, where 1 is the highest value. This is used to configure the order in which servers are queried.

Authentication Port — Identifies the authentication port. The authentication port is used to verify the RADIUS server authentication.

Number of Retries (1-10) — Specifies the number of transmitted requests sent to RADIUS server before a failure occurs. The possible field values are 1 - 10. Three is the default value.

Timeout for Reply (1-30) — Specifies the amount of the time in seconds the device waits for an answer from the RADIUS server before retrying the query, or switching to the next server. The possible field values are 1 - 30. The default is 5.

Dead Time (0-2000) — Specifies the amount of time (in seconds) that a RADIUS server is bypassed for service requests. The range is 0-2000.

Key String (1-128 Characters) — Specifies the Key string used for authenticating and encrypting all RADIUS communications between the device and the RADIUS server. This key is encrypted.
Source IP Address — Specifies the source IP address that is used for communication with RADIUS servers.

The following fields set the RADIUS default values:

Default Timeout for Reply (1-30) — Specifies the default amount of the time (in seconds) the device waits for an answer from the RADIUS server before timing out.

**NOTE:** If host-specific Timeouts, Retries, or Dead time values are not specified, the Global values (Defaults) are applied to each host.

Default Retries (1-10) — Specifies the default number of transmitted requests sent to RADIUS server before a failure occurs.

Default Dead time (0-2000) — Specifies the default amount of time (in seconds) that a RADIUS server is bypassed for service requests. The range is 0-2000.

Default Key String (1-128 Characters) — Specifies the Default Key string used for authenticating and encrypting all RADIUS communications between the device and the RADIUS server. This key is encrypted.

Source IP Address — Specifies the source IP address that is used for communication with RADIUS servers.

Usage Type — Specifies the server usage type. Can be one of the following values: login, 802.1x or all. If unspecified, defaults to all.

**Defining RADIUS Parameters:**

1. Open the RADIUS Settings page.
2. Define the fields.
3. Click Apply Changes.
   
   The RADIUS setting are updated to the device.

**Adding a RADIUS Server:**

1. Open the RADIUS Settings page.
2. Click Add.
   
   The Add RADIUS Server page opens:
Figure 6-68. Add RADIUS Server Page

3 Define the fields.
4 Click Apply Changes.

The new RADIUS server is added, and the device is updated.

Displaying the RADIUS Server List:
1 Open the RADIUS Settings page.
2 Click Show All.

The Show all RADIUS Servers page opens:

Figure 6-69. Show all RADIUS Servers

Modifying the RADIUS Server Settings:
1 Open the RADIUS Settings page.
2 Click Show All.

The RADIUS Servers List page opens.
3 Modify the relevant fields.
4 Click Apply Changes.

The RADIUS Server settings are modified, and the device is updated.
Deleting a RADIUS Server for the RADIUS Servers List:

1. Open the RADIUS Settings page.
2. Click Show All.
   The RADIUS Servers List page opens.
3. Select a RADIUS Server in the RADIUS Servers List.
4. Select the Remove check box.
5. Click Apply Changes.
   The RADIUS server is removed from the RADIUS Servers List.
Defining RADIUS Servers Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the RADIUS Settings page.

Table 6-42. RADIUS Settings CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius-server timeout</td>
<td>Sets the default interval for which a device waits for a server host to reply.</td>
</tr>
<tr>
<td>radius-server retransmit</td>
<td>Specifies the default number of times the software searches the list of RADIUS server hosts.</td>
</tr>
<tr>
<td>radius-server deadtime</td>
<td>Configures unavailable default servers to be skipped.</td>
</tr>
<tr>
<td>radius-server key</td>
<td>Sets the default authentication and encryption key for all RADIUS communications between the device and the RADIUS environment.</td>
</tr>
<tr>
<td>radius-server host</td>
<td>Specifies a RADIUS server host and any non-default settings.</td>
</tr>
<tr>
<td>show radius-servers</td>
<td>Displays the RADIUS server settings.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# radius-server timeout 5
Console (config)# radius-server retransmit 5
Console (config)# radius-server deadtime 10
Console (config)# radius-server key dell-server
Console (config)# radius-server host 196.210.100.1 auth-port 1645 timeout 20
```
<table>
<thead>
<tr>
<th>IP address</th>
<th>Port</th>
<th>Auth</th>
<th>Acct</th>
<th>TimeOut</th>
<th>Retransmit</th>
<th>Deadtime</th>
<th>Source IP</th>
<th>Priority</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.1.1</td>
<td>1812</td>
<td>1813</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>0.0.0.0</td>
<td>0</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>172.16.1.2</td>
<td>1645</td>
<td>1646</td>
<td>11</td>
<td>8</td>
<td>Global</td>
<td>Global</td>
<td>2</td>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>

Global values

---

Timeout: 5
Retransmit: 5
Deadtime: 10
Source IP: 0.0.0.0
Defining SNMP Parameters


The SNMP agents maintain a list of variables, which are used to manage the device. The variables are defined in the Management Information Base (MIB). The MIB contains the variables controlled by the agent. The SNMP protocol defines the MIB specification format, as well as the format used to access the information over the network.

Access rights to the SNMP agents are controlled by access strings. To communicate with the device, the Embedded Web Server submits a valid community string for authentication. To open the SNMP page, click System → SNMP in the tree view.

This section contains information for managing the SNMP configuration.

Defining Communities

Access rights are managed by defining communities in the Community Table. When the community names are changed, access rights are also changed. To open the SNMP Community page, click System → SNMP → Communities in the tree view.

Figure 6-70. SNMP Community
SNMP Management Station — A list of management station IP addresses.
Community String — Functions as a password and used to authenticate the selected management station to the device.
Access Mode — Defines the access rights of the community. The possible field values are:
  - Read Only — The management access is restricted to read-only, for all MIBs except the community table, for which there is no access.
  - Read Write — The management access is read-write, for all MIBs except the community table, for which there is no access.
  - SNMP Admin — The management access is read-write for all MIBs, including the community table.
Remove — Removes a community, when selected.

Defining a New Community
1 Open the SNMP Community page.
2 Click Add.
   The Add SNMP Community page opens:

   ![Add SNMP Community](image)

3 Select one of the following:
   - Management Station — Defines an SNMP community for a specific management station. (A value of 0.0.0.0 specifies all management stations.)
   - All — Defines an SNMP community for all management stations.
4 Define the remaining fields.
5 Click Apply Changes.
   The new community is saved, and the device is updated.
Displaying all Communities
1. Open the SNMP Community page.
2. Click Show All.
   The Community Table opens:

Figure 6-72. Community Table

Deleting Communities
1. Open the SNMP Community page.
2. Click Show All.
   The Community Table opens.
3. Select a community from the Community Table.
4. Select the Remove check box.
5. Click Apply Changes.
   The selected community entry is deleted, and the device is updated.
Configuring Communities Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the SNMP Community page.

**Table 6-43. SNMP Community CLI Commands**

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server community string [ro</td>
<td>rw</td>
</tr>
<tr>
<td>snmp-server host {ip-address</td>
<td>hostname} community-string [1</td>
</tr>
<tr>
<td>show snmp</td>
<td>Checks the SNMP communications status.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
console(config)# snmp-server community public_1 su 1.1.1.1
console(config)# snmp-server community public_2 rw 2.2.2.2
console(config)# snmp-server community public_3 ro 3.3.3.3
console(config)# snmp-server host 1.1.1.1 public_1 1
console(config)# snmp-server host 2.2.2.2 public_2 2
console(config)#

console# show snmp

Community-String Community-Access IP address
--
public_1 super 1.1.1.1
public_2 readwrite 2.2.2.2
public_3 readonly 3.3.3.3

Traps are enabled.
Authentication-failure trap is enabled.
```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1</td>
<td>public_1</td>
<td>1</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>public_2</td>
<td>2</td>
</tr>
</tbody>
</table>

System Contact: 345 6789
System Location: 1234 5678
console#
Defining Traps

From the SNMP Trap Settings page, the user can enable or disable the device to send SNMP traps or notifications. To open the SNMP Trap Settings page, click System → SNMP → Traps in the tree view.

Figure 6-73. SNMP Trap Settings

SNMP Trap — Enables sending SNMP traps or SNMP notifications from the device to defined trap recipients.

Authentication Trap — Enables sending SNMP traps when authentication failed to define recipients.

Select Recipient IP — Specifies the IP address to whom the traps are sent.

Community String — Identifies the community string of the trap manager.

Traps — Determines the trap type sent to the selected recipient. The possible field values are:

- SNMP V1 — SNMP Version 1 traps are sent
- SNMP V2c — SNMP Version 2 traps are sent

Remove — Removes Trap Manager Table entries, when selected.

Enabling SNMP traps on the Device

1. Open SNMP Trap Settings page.
2. Select Enable in the SNMP Trap drop-down list.
3. Define the fields.
4. Click Apply Changes.
SNMP traps are enabled on the device.

**Enabling Authentication Traps on the Device**
1. Open the SNMP Trap Settings page.
2. Select Enable in the Authentication Trap drop-down list.
3. Define the fields.
4. Click Apply Changes.
   Authentication traps are enabled on the device.

**Adding a New Trap Recipient:**
1. Open the SNMP Trap Settings page.
2. Click Add.
   The Add Trap Receiver/Manager page opens:

![Add Trap Receiver/Manager](image)

3. Define the fields. Configuring 0.0.0.0 means "All", and the traps are broadcast.
4. Click Apply Changes.
   The Trap Recipient/Manager is added, and the device is updated.

**Displaying the Trap Managers Table**
The Trap Managers Table contains fields for configuring trap types.
1. Open SNMP Trap Settings page.
2. Click Show All.
   The Trap Managers Table page opens:
### Deleting a Trap Manager Table Entry

1. Open SNMP Trap Settings page.
2. Click Show All.
   - The Trap Managers Table page opens.
3. Select a Trap Managers Table entry.
4. Select the Remove check box.
5. Click Apply Changes.
   - The selected trap manager is deleted, and the device is updated.

### Configuring Traps Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the SNMP Trap Settings page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server enable traps</code></td>
<td>Enables the device to send SNMP traps or SNMP notifications.</td>
</tr>
<tr>
<td><code>snmp-server trap authentication</code></td>
<td>Enables the device to send SNMP traps when authentication failed.</td>
</tr>
<tr>
<td>`snmp-server host host-addr community-string [1</td>
<td>2]`</td>
</tr>
<tr>
<td><code>show snmp</code></td>
<td>Displays the SNMP communications status.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console(config)# snmp-server community public_1 su 1.1.1.1
console(config)# snmp-server community public_2 rw 2.2.2.2
console(config)# snmp-server community public_3 ro 3.3.3.3
console(config)# snmp-server host 1.1.1.1 public_1 1
console(config)# snmp-server host 2.2.2.2 public_2 2
console(config)# snmp-server enable traps
console(config)# snmp-server trap authentication
```

```
console# show snmp

<table>
<thead>
<tr>
<th>Community-String</th>
<th>Community-Access</th>
<th>IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>public_1</td>
<td>super</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>public_2</td>
<td>readwrite</td>
<td>2.2.2.2</td>
</tr>
<tr>
<td>public_3</td>
<td>readonly</td>
<td>3.3.3.3</td>
</tr>
</tbody>
</table>

Traps are enabled.
Authentication-failure trap is enabled.

<table>
<thead>
<tr>
<th>Trap-Rec-Address</th>
<th>Trap-Rec-Community</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1</td>
<td>public_1</td>
<td>1</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>public_2</td>
<td>2</td>
</tr>
</tbody>
</table>

System Contact: 345 6789
System Location: 1234 5678
```
Managing Files

The File Management page contains fields for managing device software, the Image Files, and the Configuration Files. Files can be downloaded from a TFTP server.

File Management Overview

The configuration file structure consists of the following configuration files:

- **Startup Configuration File** — Contains the commands required to reconfigure the device to the same settings as when the device is powered down or rebooted. The Startup file is created by copying the configuration commands from the Running Configuration file or the Backup Configuration file.

- **Running Configuration File** — Contains all Startup file commands, as well as all commands entered during the current session. After the device is powered down or rebooted, all commands stored in the Running Configuration file are lost. During the startup process, all commands in the Startup file are copied to the Running Configuration File and applied to the device. During the session, all new commands entered are added to the commands existing in the Running Configuration file. Commands are not overwritten. To update the Startup file, before powering down the device, the Running Configuration file must be copied to the Startup Configuration file. The next time the device is restarted, the commands are copied back into the Running Configuration file from the Startup Configuration file.

- **Backup Configuration File** — Contains a backup copy of the device configuration. The Backup file is generated when the Running Configuration file or the Startup file is copied to the Backup file. The commands copied into the file replaces the existing commands saved in the Backup file. The Backup file contents can be copied to either the Running Configuration or the Startup Configuration files.

- **Image files** — System file images are saved in two Flash Files called images (Image 1 and Image 2). The active image stores the active copy, while the other image stores a second copy. The device boots and runs from the active image. If the active image is corrupted, the system automatically boots from the non-active image. This is a safety feature for faults occurring during the Software Upgrade process.

To open the File Management page, click System→File Management in the tree view. The File Management page contains links to:

- File Download
- File Upload
- Copy Files
**Downloading Files**

The File Download From Server page contains fields for downloading system image and Configuration files from the TFTP server to the device. To open the File Download From Server page, click System → File Management → File Download in the tree view.

![Figure 6-76. File Download From Server](image)

- **Firmware Download** — The Firmware file is downloaded. If Firmware Download is selected, the Configuration Download fields are grayed out.
- **Configuration Download** — The Configuration file is downloaded. If Configuration Download is selected, the Firmware Download fields are grayed out.
- **Firmware Download TFTP Server IP Address** — The TFTP Server IP Address from which files are downloaded.
- **Firmware Download Source File Name** — Specifies the file to be downloaded.
- **Firmware Download Destination File** — The destination file type to which to the file is downloaded. The possible field values are:
  - **Software Image** — Downloads the Image file.
  - **Boot Code** — Downloads the Boot file.
Active Image — The Image file that is currently active.

Active Image After Reset — The Image file that is active after the device is reset.

Configuration Download File TFTP Server IP Address — The TFTP Server IP Address from which the configuration files are downloaded.

Configuration Download File Source File Name — Specifies the configuration files to be downloaded.

Configuration Download File Destination — The destination file to which the configuration file is downloaded. The possible field values are:

- Running Configuration — Downloads commands into the Running Configuration file.
- Startup Configuration — Downloads the Startup Configuration file, and overwrites it.
- Backup Configuration — Downloads the Backup Configuration file, and overwrites it.

Downloading Files:

1. Open the File Download From Server page.
2. Define the file type to download.
3. Define the fields.
4. Click Apply Changes.

The software is downloaded to the device.

**NOTE:** To activate the selected Image file, reset the device. For information on resetting the device, see “Resetting the Device”. 
Downloading Files Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the File Download From Server page.

Table 6-45. File Download CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy source-url destination-url [snmp]</td>
<td>Copies any file from a source to a destination.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
console# copy running-config tftp://11.1.1.2/pp.txt

NOTE: Each "!" indicates that ten packets were successfully transferred.

Accessing file 'file1' on 172.16.101.101.
Loading file1 from 172.16.101.101:
!!!
!!!
!!!
!!!
!!!
[OK]
Copy took 0:01:11 [hh:mm:ss]
```

Uploading Files

The File Upload to Server page contains fields for uploading the software from the TFTP server to the device. The Image file can also be uploaded from the File Upload to Server page. To open the File Upload to Server page, click System → File Management → File Upload in the tree view.
**Figure 6-77. File Upload to Server**

Firmware Upload — The Firmware file is uploaded. If Firmware Upload is selected, the Configuration Upload fields are grayed out.

Configuration Upload — The Configuration file is uploaded. If Configuration Upload is selected, the Software Image Upload fields are grayed out.

Software Image Upload TFTP Server IP Address — The TFTP Server IP Address to which the Software Image is uploaded.

Software Image Upload Destination — Specifies the Software Image file path to which the file is uploaded.

Configuration Upload TFTP Server IP Address — The TFTP Server IP Address to which the Configuration file is uploaded.

Configuration Upload Destination — Specifies the Configuration file path to which the file is uploaded.

Configuration Upload Transfer file name — The software file to which the configuration is uploaded. The possible field values are:

- **Running Configuration** — Uploads the Running Configuration file
- **Startup Configuration** — Uploads the Startup Configuration file
- **Backup Configuration** — Uploads the Backup Configuration file

**Uploading Files**

1. Open the File Upload to Server page.
2 Define the file type to upload.
3 Define the fields.
4 Click Apply Changes.
   The software is uploaded to the device.

Uploading Files Using CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the File Upload to Server page.

Table 6-46. File Upload CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy source-url destination-url [snmp]</td>
<td>Copies any file from a source to a destination.</td>
</tr>
</tbody>
</table>

Copying Files

Files can be copied and deleted from the Copy Files page. To open the Copy Files page, click System→File Management→Copy Files in the tree view.

Figure 6-78. Copy Files

Copy Configuration — When selected, copies either the Running Configuration, Startup Configuration or Backup Configuration files. The possible field values are:
Source — Copies either the Running Configuration, Startup Configuration or Backup Configuration files.

Destination — The file to which the Running Configuration, Startup Configuration or Backup Configuration file is copied.

Restore Configuration Factory Defaults — When selected, specifies that the factory configuration default files should be reset. When unselected, maintains the current configuration settings.

Copying Files
1. Open the Copy Files page.
2. Define the Source and Destination fields.
3. Click Apply Changes.
   The file is copied, and the device is updated.

Restoring Company Factory Default Settings
1. Open the Copy Files page.
2. Click Restore Company Factory Defaults.
3. Click Apply Changes.
   The company factory default settings are restored, and the device is updated.

Copying and Deleting Files Using CLI Commands
The following table summarizes the equivalent CLI commands for setting fields displayed in the Copy Files page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy source-url destination-url [snmp]</td>
<td>Copies any file from a source to a destination.</td>
</tr>
<tr>
<td>delete startup-config</td>
<td>Deletes the startup-config file.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
Console # copy tftp://172.16.101.101/file1 image
Accessing file 'file1' on 172.16.101.101.
Loading file1 from 172.16.101.101:
!! [OK]
Copy took 0:01:11 [hh:mm:ss]
Console# delete startup-config

Console# copy running-config startup-config
01-Jan-2000 01:55:03 %COPY-W-TRAP: The copy operation was completed successfully
Copy succeeded
```

### Defining Advanced Settings

The **Advanced Settings** page contains a link for configuring general settings. Use Advanced Settings to set miscellaneous global attributes for the device. The changes to these attributes are applied only after the device is reset. To open the **Advanced Settings** page, click **System → Advanced Settings** in the tree view.

### Configuring General Device Tuning Parameters

The **General Settings** page provides information for defining general device parameters. To open the **General Settings** page, click **System → Advanced Settings → General** in the tree view.
Attribute — The general setting attribute.

Current — The currently configured value.

After Reset — The future (after reset) value. By entering a value in the After Reset column, memory is allocated to the field table.

Max RAM Log Entries (20-400) — The maximum number of RAM Log entries. When the Log entries are full, the log is cleared and the Log file is restarted.

Jumbo Frames — Enables or disables the Jumbo Frames feature. Jumbo Frames enable the transportation of identical data in fewer frames. This ensures less overhead, lower processing time, and fewer interrupts.

Viewing RAM Log Entries Counter Using the CLI Commands

The following table summarizes the equivalent CLI commands for setting fields displayed in the General Settings page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging buffered size</td>
<td>Sets the number of syslog messages stored in the</td>
</tr>
<tr>
<td>number</td>
<td>internal buffer (RAM).</td>
</tr>
<tr>
<td>port jumbo-frame</td>
<td>Enables jumbo frames for the device.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
Console (config)# logging buffered size 300
```
Configuring Device Information

This section provides all system operation and general information for configuring network security, ports, Address tables, GARP, VLANs, Spanning Tree, Port Aggregation, and Multicast Support.

Configuring Network Security

The device enables network security through both Access Control Lists and Locked Ports. To open the Network Security page select Switch → Network Security.

Network Security Overview

This section describes the network security features.

Port Based Authentication (802.1x)

Port based authentication enables authenticating system users on a per-port basis via an external server. Only authenticated and approved system users can transmit and receive data. Ports are authenticated via the RADIUS server using the Extensible Authentication Protocol (EAP). Port Authentication includes:

- **Authenticators** — Specifies the port that is authenticated before permitting system access.
- **Supplicants** — Specifies host connected to the authenticated port requesting to access the system services.
- **Authentication Server** — Specifies the external server, for example, the RADIUS server that performs the authentication on behalf of the authenticator, and indicates whether the user is authorized to access system services.

Port based authentication creates two access states:

- **Controlled Access** — Permits communication between the user and the system, if the user is authorized.
- **Uncontrolled Access** — Permits uncontrolled communication regardless of the port state.
The device currently supports Port Based Authentication via RADIUS servers.

**Advanced Port Based Authentication**

Advanced Port Based Authentication enables multiple hosts to be attached to a single port. Advanced Port Based Authentication requires only one host to be authorized for all hosts to have system access. If the port is unauthorized all attached hosts are denied access to the network.

Advanced Port Based Authentication also enables user based authentication. Specific VLANs in the device are always available, even if specific ports attached to the VLAN are unauthorized. For example, Voice over IP does not require authentication, while data traffic requires authentication. VLANs for which authorization is not required can be defined. Unauthenticated VLANs are available to users, even if the ports attached to the VLAN are defined as authorized.

Advanced Port Based Authentication is implemented in the following modes:

- **Single Host Mode** — Enables only the authorized host to access the port.
- **Multiple Host Mode** — Enables multiple hosts to be attached to a single port. Only one host must be authorized for all hosts to access the network. If the host authentication fails or an EAPOL-logoff message is received, all attached clients are denied network access.
Configuring Port Based Authentication

The Port Based Authentication page contains fields for configuring port based authentication. To open the Port Based Authentication page, click Switch → Network Security → Port Based Authentication.

Figure 7-80. Port Based Authentication

![Port Based Authentication page](image)

Port Based Authentication State — Permits port based authentication on the device. The possible field values are:

- **Enable** — Enables port based authentication on the device.
- **Disable** — Disables port based authentication on the device.

Authentication Method — The Authentication method used. The possible field values are:

- **None** — No authentication method is used to authenticate the port.
- **RADIUS** — Port authentication is performed using the RADIUS server.
- **RADIUS, None** — Port authentication is performed first using the RADIUS server. If the port is not authenticated, then no authentication method is used, and the session is permitted.

Interface — Contains an interface list.

User Name — The user name as configured in the RADIUS server.

Admin Interface Control — Defines the port authorization state. The possible field values are:

- **Authorized** — Set the interface state to authorized (permit traffic).
Unauthorized — Set the interface state to unauthorized (deny traffic).

Auto — Authorize state is set by the authorization method.

Current Interface Control — The currently configured port authorization state.

Periodic Reauthentication — Reauthenticate the selected port periodically, when enabled. The reauthentication period is defined in the Reauthentication Period (300-4294967295) field.

Reauthentication Period (300-4294967295) — Indicate the time span in which the selected port is reauthenticated. The field value is in seconds. The field default is 3600 seconds.

Reauthenticate Now — Permits immediate port reauthentication, when selected.

Authentication Server Timeout (1-65535) — Defines the amount of time that lapses before the device resends a request to the authentication server. The field value is in seconds. The field default is 30 seconds.

Resending EAP Identity Request (1-65535) — Defines the amount of time that lapses before EAP request are resent. The field default is 30 seconds.

Quiet Period (0-65535) — The number of seconds that the device remains in the quiet state following a failed authentication exchange. The possible field range is 0-65535. The field default is 60 seconds.

Supplicant Timeout (1-65535) — The amount of time that lapses before EAP requests are resent to the user. The field value is in seconds. The field default is 30 seconds.

Max EAP Requests (1-10) — The total amount of EAP requests sent. If a response is not received after the defined period, the authentication process is restarted. The field default is 2 retries.

Displaying the Port Based Authentication Table

1 Display the Port Based Authentication page.

2 Click Show All.

The Port Based Authentication Table opens:
Termination Cause — The reason for which the port authentication was terminated.
Copy To Checkbox — Copies port parameters from one port to the selected ports.
Select All — Selects all ports in the Port Based Authentication Table.

Copying Parameters in the Port Based Authentication Table
1. Open the Port Based Authentication page.
2. Click Show All.
   The Port Based Authentication Table opens.
3. Select the interface in the Copy Parameters from field.
4. Select an interface in the Port Based Authentication Table.
5. Select the Copy to check box to define the interfaces to which the Port based authentication parameters are copied.
6. Click Apply Changes.
   The parameters are copied to the selected port in the Port Based Authentication Table, and the device is updated.
Enabling Port Based Authentication Using the CLI Commands

The following table summarizes the equivalent CLI commands for enabling the port based authentication as displayed in the Port Based Authentication page.

Table 7-49. Port Authentication CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa authentication dot1x</td>
<td>Specifies one or more authentication, authorization, and accounting (AAA) methods for use on interfaces running IEEE 802.1X.</td>
</tr>
<tr>
<td>default method1 [method2]</td>
<td>Sets the maximum number of times that the device sends an EAP to the client, before restarting the authentication process.</td>
</tr>
<tr>
<td>dot1x max-req count</td>
<td>Manually initiates a re-authentication of all 802.1X-enabled ports or the specified 802.1X-enabled port.</td>
</tr>
<tr>
<td>dot1x re-authenticate [ethernet interface]</td>
<td>Enables periodic re-authentication of the client.</td>
</tr>
<tr>
<td>dot1x re-authentication</td>
<td>Sets the number of seconds that the device remains in the quiet state following a failed authentication exchange.</td>
</tr>
<tr>
<td>dot1x timeout quiet-period</td>
<td>Sets the number of seconds between re-authentication attempts.</td>
</tr>
<tr>
<td>dot1x timeout server-timeout</td>
<td>Sets the time for the retransmission of packets to the authentication server.</td>
</tr>
<tr>
<td>dot1x timeout supp-timeout</td>
<td>Sets the time for the retransmission of an EAP request frame to the client.</td>
</tr>
<tr>
<td>dot1x timeout tx-period</td>
<td>Sets the number of seconds that the device waits for a response to an EAP - request/identity frame, from the client, before resending the request.</td>
</tr>
<tr>
<td>show dot1x [ethernet interface]</td>
<td>Displays 802.1X status for the device or for the specified interface.</td>
</tr>
<tr>
<td>show dot1x users [username]</td>
<td>Displays 802.1X users for the device.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console> enable
Console# show dot1x
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
<th>Reauth Control</th>
<th>Reauth Period</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>Auto</td>
<td>Authorized</td>
<td>Ena</td>
<td>3600</td>
<td>Bob</td>
</tr>
<tr>
<td>g2</td>
<td>Auto</td>
<td>Authorized</td>
<td>Ena</td>
<td>3600</td>
<td>John</td>
</tr>
<tr>
<td>g3</td>
<td>Auto</td>
<td>Unauthorized</td>
<td>Ena</td>
<td>3600</td>
<td>Clark</td>
</tr>
<tr>
<td>g4</td>
<td>Force-auth</td>
<td>Authorized</td>
<td>Dis</td>
<td>3600</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Configuring Advanced Port Based Authentication

The Multiple Hosts page provides information for defining advanced port based authentication settings for specific ports. To open the Multiple Hosts, click Switch → Network Security → Multiple Hosts.

Figure 7-82. Multiple Hosts
Port — The port number for which Advanced Port Based Authentication is enabled.

Multiple Hosts — Enables or disables a single host to authorize multiple hosts for system access. This setting must be enabled in order to either disable the ingress-filter, or to use port-lock security on the selected port.

Action on Single Host Violation — Defines the action to be applied to packets arriving in single-host mode, from a host whose MAC address is not the client (supplicant) MAC address. The Action on Single Host Violation field can be defined only if the Multiple Hosts field is defined as Disable. The possible field values are:

- Permit — Forwards the packets from an unknown source, however, the MAC address is not learned.
- Deny — Discards the packets from any unlearned source. This is the default value.
- Shutdown — Discards the packet from any unlearned source and locks the port. Ports remain locked until they are activated, or the device is reset.

Traps — Enables or disables sending traps to the host if a violation occurs.

Trap Frequency (1-1000000) (Sec) — Defines the time period by which traps are sent to the host. The Trap Frequency (1-1000000) field can be defined only if the Multiple Hosts field is defined as Disable. The default is 10 seconds.

Status — The host status. The possible field values are:

- Unauthorized — Clients (supplicants) have full port access.
- Authorized — Clients (supplicants) have limited port access.
- No single-host — Multiple Hosts is enabled.

Number of Violations — The number of packets that arrived on the interface in single-host mode, from a host whose MAC address is not the client (supplicant) MAC address.

Displaying the Multiple Hosts Table

1. Open the Multiple Hosts page.
2. Click Show All.
   
   The Multiple Hosts Table opens:
Enabling Multiple Hosts Using the CLI Commands

The following table summarizes the equivalent CLI commands for enabling the advanced port based authentication as displayed in the Multiple Hosts page.

![Multiple Hosts Table](image-url)
Table 7-50  Multiple Hosts CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x multiple-hosts</td>
<td>Allows multiple hosts (clients) on an 802.1X-authorized port that has the dot1x port-control interface configuration command set to auto.</td>
</tr>
<tr>
<td>dot1x single-host-violation</td>
<td>Configures the action to be taken when a station, whose MAC address is not the client (supplicant) MAC address, attempts to access the interface.</td>
</tr>
</tbody>
</table>

Neyland# configure
Neyland(config)# interface ethernet g1
Neyland(config-if)# dot1x multiple-hosts

The following is an example of the CLI Command.

Neyland# configure
Neyland(config)# interface ethernet g1
Neyland(config-if)# dot1x multiple-hosts
**Authenticating Users**

The **Authenticated Users** page displays user port access lists. The User Access Lists are defined in the **Add User Name** page. To open the **Authenticated Users** page, click Switch → Network Security → Authenticated Users.

**Figure 7-84. Authenticated Users**

User Name	List of users authorized via the RADIUS Server.
Port	The port number(s) used for authentication - per user name.
Session Time	The amount of time the user was logged on to the device. The field format is Day:Hour:Minute:Seconds, for example, 3 days: 2 hours: 4 minutes: 39 seconds.
Last Authentication	The amount of time that has passed since the user was last authenticated. The field format is Day:Hour:Minute:Seconds, for example, 3 days:2 hours: 4 minutes: 39 seconds.
**Authentication Method** — The method by which the last session was authenticated. The possible field values are:
- **Remote** — The user was authenticated from a remote server.
- **None** — The user was not authenticated.

**MAC Address** — The client (supplicant) MAC address.

**Displaying the Authenticated Users Table**

1. Open the Add User Name page.
2. Click Show All.

   The Authenticated Users Table opens:

   ![Authenticated Users Table](image)

**Authenticating Users Using the CLI Commands**

The following table summarizes the equivalent CLI commands for authenticating users as displayed in the Add User Name page.

**Table 7-51. Add User Name CLI Commands**

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dot1x users</code></td>
<td>Displays 802.1X users for the device</td>
</tr>
<tr>
<td><code>username</code></td>
<td></td>
</tr>
</tbody>
</table>

**Figure 7-85. Authenticated Users Table**
The following is an example of the CLI commands:

```
console# show dot1x users
```

<table>
<thead>
<tr>
<th>Username</th>
<th>Session Time</th>
<th>Last Auth Time</th>
<th>Auth Method</th>
<th>MAC Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>1d3h</td>
<td>58m</td>
<td>Remote</td>
<td>00:08:3b:79:87:87</td>
<td>g1</td>
</tr>
<tr>
<td>John</td>
<td>8h19m</td>
<td>2m</td>
<td>None</td>
<td>00:08:3b:89:31:27</td>
<td>g2</td>
</tr>
</tbody>
</table>

**Configuring Port Security**

Network security can be increased by limiting access on a specific port only to users with specific MAC addresses. The MAC addresses can be dynamically learned, up to that point, or they can be statically configured. Locked port security monitors both received and learned packets that are received on specific ports. Access to the locked port is limited to users with specific MAC addresses. These addresses are either manually defined on the port, or learned on that port up to the point when it is locked. When a packet is received on a locked port, and the packet’s source MAC address is not tied to that port (either it was learned on a different port, or is unknown to the system), the protection mechanism is invoked, and can provide various options. Unauthorized packets arriving to a locked port are either:

- Forwarded
- Discarded with no trap
- Discarded with a trap
- The ingress port is disabled
Locked port security also enables storing a list of MAC addresses in the configuration file. The MAC address list can be restored after the device has been reset. Disabled ports are activated from the Port Parameters page, see "Defining Port Parameters". To open the Port Security page, click Switch → Network Security → Port Security.

**Figure 7-86. Port Security**

![Port Security Interface](image)

- **Interface** — The selected interface type on which Locked Port is enabled.
  - **Port** — The selected interface type is a port.
  - **LAG** — The selected interface type is a LAG.

- **Current Port Status** — The currently configured Port status.

- **Set Port** — The port is either locked or unlocked. The possible field values are:
  - **Unlocked** — Unlocks Port. This is the default value.
  - **Locked** — Locks Port.

- **Action on Violation** — The action to be applied to packets arriving on a locked port. The possible field values are:
  - **Forward** — Forwards the packets from an unknown source, however, the MAC address is not learned.
  - **Discard** — Discards the packets from any unlearned source. This is the default value.
  - **Shutdown** — Discards the packet from any unlearned source and locks the port. Port remained locked until they are activated, or the device is reset.
**Trap** — Enables traps being sent when a packet is received on a locked port.

**Trap Frequency (1-1000000)** — The amount of time (in seconds) between traps. This field only applies to Locked ports. The default value is 10 seconds.

### Defining a Locked Port

1. Open the Port Security page.
2. Select an interface type and number.
3. Define the fields.
4. Click Apply Changes.
   
   The locked port is added to the Port Security Table, and the device is updated.

### Displaying the Locked Port Table

1. Open the Port Security page.
2. Click Show All.
   
   The Port Security Table opens:

   Locked Ports can also be defined from the Locked Ports Table, as well as the Port Security page.
Figure 7-87. Port Security Table
Configuring Locked Port Security with CLI Commands

The following table summarizes the equivalent CLI commands for configuring Locked Port security as displayed in the Port Security page.

Table 7-52. Port Security CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shutdown</td>
<td>Disables interfaces.</td>
</tr>
<tr>
<td>set interface active</td>
<td>Reactivates an interface that is shutdown due to</td>
</tr>
<tr>
<td></td>
<td>port security reasons.</td>
</tr>
<tr>
<td></td>
<td>port security [forward</td>
</tr>
<tr>
<td></td>
<td>[trap seconds]</td>
</tr>
<tr>
<td>show ports security</td>
<td>Displays port lock status.</td>
</tr>
<tr>
<td></td>
<td>show ports security {ethernet interface</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console # show ports security

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Action</th>
<th>Trap</th>
<th>Frequency</th>
<th>Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>g7</td>
<td>Unlocked</td>
<td>Discard</td>
<td>Enable</td>
<td>100</td>
<td>88</td>
</tr>
<tr>
<td>g8</td>
<td>Unlocked</td>
<td>Discard,</td>
<td>Disable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shutdown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g3</td>
<td>Unlocked</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
```

Configuring Device Information | 213
Configuring Ports

The Ports page contains links to port functionality pages including advanced features, such as Storm Control and Port Mirroring. To open the Ports page, click Switch → Ports.

Defining Port Parameters

The Port Configuration page contains fields for defining port parameters. To open the Port Configuration page, click Switch → Ports → Port Configuration in the tree view.

Figure 7-88. Port Configuration

- **Port** — The port number for which port parameters are defined.
- **Description (0-64 Characters)** — A brief interface description, such as Ethernet.
- **Port Type** — The type of port.
- **Admin Status** — Enables or disables traffic forwarding through the port. The new port status is displayed in the Current Port Status field.
Current Port Status — Specifies whether the port is currently operational or non-operational.

Re-Activate Port — Reactivates a port if the port has been disabled through the locked port security option.

Operational Status — The port operational status. Possible field values are:

  - Suspended — The port is currently active, and is currently not receiving or transmitting traffic.
  - Active — The port is currently active and is currently receiving and transmitting traffic.
  - Disable — The port is currently disabled, and is not currently receiving or transmitting traffic.

Admin Speed — The configured rate for the port. The port type determines what speed setting options are available. Admin speed can only be designated when auto negotiation is disabled on the configured port.

Current Port Speed — The actual currently configured port speed (bps).

Admin Duplex — The port duplex mode can be either Full or Half. Full indicates that the interface supports transmission between the device and its link partner in both directions simultaneously. Half indicates that the interface supports transmission between the device and the client in only one direction at a time.

Current Duplex Mode — The currently configured port duplex mode.

Auto Negotiation — Enables Auto Negotiation on the port. Auto Negotiation is a protocol between two link partners that enables a port to advertise its transmission rate, duplex mode and flow control abilities to its partner.

Current Auto Negotiation — The currently configured Auto Negotiation setting.

Back Pressure — Enables Back Pressure mode on the port. Back Pressure mode is used with Half Duplex mode to disable ports from receiving messages.

Current Back Pressure — The currently configured Back Pressure setting.

Flow Control — Enables or disables flow control or enables the auto negotiation of flow control on the port. Operates when port is in Full duplex mode.

Current Flow Control — The currently configured Flow Control setting.

MDI/MDIX — Allows the device to decipher between crossed and uncrossed cables.

Hubs and switches are deliberately wired opposite the way end stations are wired, so that when a hub or switch is connected to an end station, a straight through Ethernet cable can be used, and the pairs are match up properly. When two hubs/switches are connected to each other, or two end stations are connected to each other, a crossover cable is used ensure that the correct pairs are connected. The possible field values are:

  - Auto — Used to automatically detect the cable type.
  - MDI (Media Dependent Interface) — Used for end stations.
  - MDIX (Media Dependent Interface with Crossover) — Used for hubs and switches.
Current MDI/MDIX— The currently configured device MDI/MDIX settings.
LAG — Specifies if the port is part of a LAG.

Defining Port Parameters
1 Open the Port Configuration page.
2 Select a port in the Port Field.
3 Define the remaining fields.
4 Click Apply Changes.
   The port parameters are saved to the device.

Modifying Port Parameters
1 Open the Port Configuration page.
2 Select a port in the Port Field.
3 Modify the remaining fields.
4 Click Apply Changes.
   The port parameters are saved to the device.

Displaying the Port Configuration Table:
1 Open the Port Configuration page.
2 Click Show All.
   The Ports Configuration Table opens:
Configuring Ports with CLI Commands

The following table summarizes the equivalent CLI commands for configuring ports as displayed in the Ports Configuration Table page.

Table 7-53. Port Configuration CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface ethernet interface</code></td>
<td>Enters the interface configuration mode to configure an ethernet type interface.</td>
</tr>
<tr>
<td><code>description string</code></td>
<td>Adds a description to an interface configuration.</td>
</tr>
<tr>
<td>CLI Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>shutdown</td>
<td>Disables interfaces that are part of the currently set context.</td>
</tr>
<tr>
<td>set interface active</td>
<td>Reactivates an interface that is shutdown due to security reasons.</td>
</tr>
<tr>
<td>ethernet interface</td>
<td>Configures the speed of a given ethernet interface when not using auto negotiation.</td>
</tr>
<tr>
<td>set interface active</td>
<td>Activates an interface that is shutdown due to security reasons.</td>
</tr>
<tr>
<td>speed bps</td>
<td>Sets the line for automatic baud rate detection.</td>
</tr>
<tr>
<td>autobaud</td>
<td>Configures the full/half duplex operation of a given ethernet interface when not using auto negotiation.</td>
</tr>
<tr>
<td>duplex {half</td>
<td>full}</td>
</tr>
<tr>
<td>negotiation</td>
<td>Enables Back Pressure on a given interface.</td>
</tr>
<tr>
<td>flowcontrol {auto</td>
<td>on</td>
</tr>
<tr>
<td>mdix {on</td>
<td>auto}</td>
</tr>
<tr>
<td>show interfaces configuration [ethernet interface</td>
<td>port-channel port-channel-number]</td>
</tr>
<tr>
<td>show interfaces status</td>
<td>Displays the status for all configured interfaces.</td>
</tr>
<tr>
<td>show interfaces description [ethernet interface</td>
<td>port-channel port-channel-number]</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```console
console (config)# interface ethernet g5
console (config-if)# description RD SW#3
console (config-if)# shutdown
console (config-if)# no shutdown
console (config-if)# speed 100
console (config-if)# duplex full
console (config-if)# negotiation
console (config-if)# back-pressure
console (config-if)# flowcontrol on
console (config-if)# mdix auto
console (config-if)# exit
console (config)# exit

console# show interfaces configuration ethernet g5

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Duplex</th>
<th>Speed</th>
<th>Neg</th>
<th>Flow Control</th>
<th>Admin State</th>
<th>Back Pressure</th>
<th>Mdix Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>g5</td>
<td>1G</td>
<td>Full</td>
<td>100</td>
<td>Enabled</td>
<td>On</td>
<td>Up</td>
<td>Enable</td>
<td>Auto</td>
</tr>
</tbody>
</table>

core# console#

console# show interfaces status ethernet g5

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Duplex</th>
<th>Speed</th>
<th>Neg</th>
<th>Flow Control</th>
<th>Link State</th>
<th>Back Pressure</th>
<th>Mdix Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>g5</td>
<td>1G</td>
<td>Full</td>
<td>100</td>
<td>Enabled</td>
<td>On</td>
<td>Up</td>
<td>Disabled</td>
<td>on</td>
</tr>
</tbody>
</table>

core# console#
```
### show interfaces status

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Duplex</th>
<th>Speed</th>
<th>Neg</th>
<th>Flow Control</th>
<th>Link State</th>
<th>Back Pressure</th>
<th>Mdix Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>1G</td>
<td>Full</td>
<td>100</td>
<td>Auto</td>
<td>On</td>
<td>Up</td>
<td>Enable</td>
<td>On</td>
</tr>
<tr>
<td>g1</td>
<td>100</td>
<td>Full</td>
<td>100</td>
<td>Off</td>
<td>Off</td>
<td>Down</td>
<td>Disable</td>
<td>Off</td>
</tr>
<tr>
<td>g2</td>
<td>100</td>
<td>Full</td>
<td>1000</td>
<td>Off</td>
<td>Off</td>
<td>Up</td>
<td>Disable</td>
<td>On</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ch</th>
<th>Type</th>
<th>Duplex</th>
<th>Speed</th>
<th>Neg</th>
<th>Flow Control</th>
<th>Back Pressure</th>
<th>Link State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>Full</td>
<td>1000</td>
<td>Off</td>
<td>Off</td>
<td>Disable</td>
<td>Up</td>
</tr>
</tbody>
</table>
Defining LAG Parameters

The LAG Configuration page contains fields for configuring parameters for configured LAGs. The device supports up to eight ports per LAG, and eight LAGs per system.

For information about Link Aggregated Groups (LAG) and assigning ports to LAGs, refer to Aggregating Ports.

To open the LAG Configuration page, click Switch→Ports→LAG Configuration in the tree view.

**NOTE:** If port configuration is modified while the port is a LAG member, the configuration change is only effective after the port is removed from the LAG.

**Figure 7-90. LAG Configuration**

LAG — The LAG number.

Description (0-64 Characters) — Provides a user-defined description of the configured LAG.

LAG Type — The port types that comprise the LAG.

Admin Status — Enables or disables traffic forwarding through the selected LAG.

Current LAG Status — Indicates if the LAG is currently operating.

Re-Activate Suspended LAG — Reactivates a suspended LAG.
Operational Status — Operational status of the LAG.

Admin Auto Negotiation — Enables or disables Auto Negotiation on the LAG. Auto-negotiation is a protocol between two link partners that enables a LAG to advertise its transmission rate, duplex mode and flow control (the flow control default is disabled) abilities to its partner.

Current Auto Negotiation — The currently configured Auto Negotiation setting.

Admin Speed — The speed at which the LAG is operating.

Current LAG Speed — The currently configured speed at which the LAG is operating.

Admin Back Pressure — Enables or disables Back Pressure mode on the LAG. Back Pressure mode is effective on the ports operating in Half Duplex in the LAG.

Current Back Pressure — The currently configured Back Pressure setting.

Admin Flow Control — Enables/disables flow control, or enables the auto negotiation of flow control on the LAG. Flow Control mode is effective on the ports operating in Full Duplex in the LAG.

Current Flow Control — The user-designated flow control setting.

Defining LAG Parameters

1. Open the LAG Configuration page.
2. Select a LAG in the LAG field.
3. Define the fields.
4. Click Apply Changes.

   The LAG parameters are saved to the device.

Modifying LAG Parameters

1. Open the LAG Configuration page.
2. Select a LAG in the LAG field.
3. Modify the fields.
4. Click Apply Changes.

   The LAG parameters are saved to the device.

Displaying the LAG Configuration Table:

1. Open the LAG Configuration page.
2. Click Show All.

   The LAG Configuration Table opens:
Configuring LAGs with CLI Commands

The following table summarizes the equivalent CLI commands for configuring LAGs as displayed in the LAG Configuration page.

Table 7-54. LAG Configuration CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface port-channel</td>
<td>Enters the interface configuration mode of a specific port-channel.</td>
</tr>
<tr>
<td>channel-number</td>
<td></td>
</tr>
<tr>
<td>description string</td>
<td>Adds a description to an interface configuration.</td>
</tr>
<tr>
<td>shutdown</td>
<td>Disables interfaces that are part of the currently set context.</td>
</tr>
<tr>
<td>speed bps</td>
<td>Configures the speed of a given ethernet interface when not using auto negotiation.</td>
</tr>
<tr>
<td>autobaud</td>
<td>Sets the line for automatic baud rate detection.</td>
</tr>
<tr>
<td>negotiation</td>
<td>Enables auto negotiation operation for the speed and duplex parameters of a given interface.</td>
</tr>
<tr>
<td>back-pressure</td>
<td>Enables Back Pressure on a given interface</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```plaintext
console(config-if)# channel-group 1 mode on
console(config-if)# exit
console(config)# interface range e g21-24
console(config-if)# channel-group 1 mode on
console(config-if)# exit
console(config)# interface ethernet g5
console(config-if)# channel-group 2 mode on
console(config-if)# exit
console(config)# exit

console# show interfaces port-channel
Channel Ports
---------- ----------
ch1 Inactive: g(21-24)
ch2 Active: g5
```
Enabling Storm Control

A Broadcast Storm is a result of an excessive amount of broadcast messages simultaneously transmitted across a network by a single port. Forwarded message responses are heaped onto the network, straining network resources or causing the network to time out.

The system measures the incoming Broadcast and Multicast frame rate separately on each port, and discard frames when the rate exceeds a user-defined rate.

The Storm Control page provides fields for enabling and configuring Storm Control. To open the Storm Control page, click Switch→Ports→Storm Control in the tree view.

Figure 7-92  Storm Control

Count Multicast with Broadcast — Counts Broadcast and Multicast traffic. The possible field values are:

- Enable — Counts Broadcast and Multicast traffic.
– **Disable** — Counts only Broadcast traffic.

**Broadcast Rate Threshold (1-1000000)**—The maximum rate (packets per second) at which unknown packets are forwarded. The range is 0-1000000. The default value is zero. All values are rounded to the nearest 64Kbps. If the field value is under 64Kbps, the value is rounded up to 64Kbps, with the exception of the value zero.

**Port** — The port from which storm control is enabled.

**Broadcast Control** — Enables or disables forwarding broadcast packet types on the device.

### Enabling Storm Control on the Device

1. Open the **Storm Control** page.
2. Select an interface on which to implement storm control.
3. Define the fields.
4. Click **Show All**.

   The Storm Control is enabled on the device.

### Modifying Storm Control Port Parameters

1. Open the **Storm Control** page.
2. Modify the fields.
3. Click **Show All**.

   The Storm Control port parameters are saved to the device.

### Displaying the Port Parameters Table

1. Open the **Storm Control** page.
2. Click **Show All**.

   The **Storm Control Settings Table** opens:
Configuring Storm Control with CLI Commands

The following table summarizes the equivalent CLI commands for configuring Storm Control as displayed on the Storm Control page.

Table 7-55. Storm Control CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port storm-control include-multicast</td>
<td>Enables the device to count Multicast packets together with broadcast packets.</td>
</tr>
<tr>
<td>port storm-control broadcast enable</td>
<td>Enables broadcast storm control.</td>
</tr>
<tr>
<td>port storm-control broadcast rate rate</td>
<td>Configures the maximum broadcast rate.</td>
</tr>
<tr>
<td>show ports storm-control [ethernet interface]</td>
<td>Displays the storm control configuration.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console> enable
console# configure
Console(config)# port storm-control include-multicast
Console(config)# port storm-control broadcast rate 8000
Console(config)# interface ethernet g1
Console(config-if)# port storm-control broadcast enable
Console(config-if)# end
Console# show ports storm-control

<table>
<thead>
<tr>
<th>Port</th>
<th>Broadcast Storm control [Packets/sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>8000</td>
</tr>
<tr>
<td>g2</td>
<td>Disabled</td>
</tr>
<tr>
<td>g4</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
```

**Defining Port Mirroring Sessions**

Port mirroring monitors and mirrors network traffic by forwarding copies of incoming and outgoing packets from one port to a monitoring port.

Port mirroring is configured by selecting a specific port to copy all packets, and different ports from which the packets copied. Before configuring Port Mirroring, note the following:

Before configuring Port Mirroring, note the following:

- Monitored port cannot operate faster than the monitoring port.
- All the RX/TX packets should be monitored to the same port.

The following restrictions apply to ports configured to be destination ports:

- Ports cannot be configured as a source port.
- Ports cannot be a LAG member.
- IP interfaces are not configured on the port.
- GVRP is not enabled on the port.
- The port is not a VLAN member.
- Only one destination port can be defined.
The following restrictions apply to ports configured to be source ports:

- Source Ports cannot be a LAG member.
- Ports cannot be configured as a destination port.
- All packets are transmitted tagged from the destination port.
- Monitored all RX/TX packets to the same port.

To open the Port Mirroring page, click Switch→Ports→Port Mirroring in the tree view.

NOTE: When a port is set to be a target port for a port-mirroring session, all normal operations on it are suspended. This includes Spanning Tree and LACP.

Figure 7-94. Port Mirroring

Destination Port — The port number to which port traffic is copied.

Source Port — Defines the port number from which port traffic is mirrored.

Type — Indicates if the source port is RX, TX, or both RX and TX.

Status — Indicates if the port is currently monitored (Active) or not monitored (Ready).

Remove — When selected, removes the port mirroring session.

Adding a Port Mirroring Session

1. Open the Port Mirroring page.
2. Click Add.
   The Add Source Port page opens.
3. Select the destination port from the Destination Port drop-down menu.
4. Select the source port from the **Source Port** drop-down menu.
5. Define the **Type** field.
6. Click **Apply Changes**.
   The new source port is defined, and the device is updated.

**Deleting a Copy Port from a Port Mirroring Session**

1. Open the **Port Mirroring** page.
2. Select the **Remove** check box.
3. Click **Apply Changes**.
   The selected port mirroring session is deleted, and the device is updated.

**Configuring a Port Mirroring Session Using CLI Commands**

The following table summarizes the equivalent CLI commands for configuring a Port Mirroring session as displayed in the **Port Mirroring** page.

<table>
<thead>
<tr>
<th>Table 7-56. Port Mirroring CLI Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CLI Command</strong></td>
</tr>
<tr>
<td>port monitor src-interface [rx</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console(config)# interface ethernet g1
Console(config-if)# port monitor g8
Console# show ports monitor
```

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Destination Port</th>
<th>Type</th>
<th>Status</th>
<th>VLAN Tagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>g8</td>
<td>g1</td>
<td>RX, TX</td>
<td>Active</td>
<td>No</td>
</tr>
<tr>
<td>g2</td>
<td>g8</td>
<td>RX, TX</td>
<td>Active</td>
<td>No</td>
</tr>
<tr>
<td>g18</td>
<td>g8</td>
<td>Rx</td>
<td>Active</td>
<td>No</td>
</tr>
</tbody>
</table>
Configuring Address Tables

MAC addresses are stored in either the Static Address or the Dynamic Address databases. A packet addressed to a destination stored in one of the databases is forwarded immediately to the port. The Static and Dynamic Address Tables can be sorted by interface, VLAN, and interface type. MAC addresses are dynamically learned as packets from sources arrive at the device. Addresses are associated with ports by learning the ports from the frame’s source address. Frames addressed to a destination MAC address that is not associated with any port are flooded to all ports of the relevant VLAN. Static addresses are manually configured. In order to prevent the bridging table from overflowing, dynamic MAC addresses, from which no traffic is seen for a certain period, are erased. To open the Address Tables page, click Switch→Address Table in the tree view.

Defining Static Addresses

The Static MAC Address page contains a list of static MAC addresses. Static Address can be added and removed from the Static MAC Address page. In addition, several MAC Addresses can be defined for a single port. To open the Static MAC Address page, click Switch→Address Table→Static Address in the tree view.

Figure 7-95. Static MAC Address
Interface — The specific port or LAG to which the static MAC address is applied.
MAC Address — The MAC address listed in the current static address list.
VLAN ID — The VLAN ID attached to the MAC Address.
VLAN Name — User-defined VLAN name.
Status — MAC address status. Possible values are:
   Secure — Guarantees that a locked port MAC address is not deleted.
   Permanent — The MAC address is permanent.
   Delete on Reset — The MAC address is deleted when the device is reset.
   Delete on Timeout — The MAC address is deleted when a timeout occurs.
Remove — When selected, removes the MAC address from the MAC Address Table.

Adding a Static MAC Address
1. Open the Static MAC Address page.
2. Click Add.
The Add Static MAC Address page opens.
3. Complete the fields.
4. Click Apply Changes.
The new static address is added to the Static MAC Address Table, and the device is updated.

Modifying a Static Address in the Static MAC Address Table
1. Open the Static MAC Address page.
2. Modify the fields.
3. Click Apply Changes.
The static MAC address is modified, and the device is updated.

Removing a Static Address from the Static Address Table
1. Open the Static MAC Address page.
2. Click Show All.
The Static MAC Address Table opens.
3. Select a table entry.
4. Select the Remove check box.
5. Click Apply Changes.
The selected static address is deleted, and the device is updated.
Configuring Static Address Parameters Using CLI Commands

The following table summarizes the equivalent CLI commands for configuring static address parameters as displayed in the Static MAC Address page.

Table 7-57. Static Address CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge address mac-address {ethernet interface</td>
<td>port-channel port-channel-number} [permanent</td>
</tr>
<tr>
<td>show bridge address-table [vlan vlan]</td>
<td>Displays entries in the bridge-forwarding database.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console# show bridge address-table
Aging time is 300 sec

<table>
<thead>
<tr>
<th>vlan</th>
<th>mac address</th>
<th>port</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:60:70:4C:73:FF</td>
<td>g8</td>
<td>dynamic</td>
</tr>
<tr>
<td>1</td>
<td>00:60:70:8C:73:FF</td>
<td>g8</td>
<td>dynamic</td>
</tr>
<tr>
<td>200</td>
<td>00:10:0D:48:37:FF</td>
<td>g9</td>
<td>static</td>
</tr>
<tr>
<td>g8</td>
<td>00:10:0D:98:37:88</td>
<td>g8</td>
<td>dynamic</td>
</tr>
</tbody>
</table>
```
Viewing Dynamic Addresses

The Dynamic Address Table contains fields for querying information in the dynamic address table, including the interface type, MAC addresses, VLAN, and table sorting. Packets forwarded to an address stored in the address table are forwarded directly to those ports. The Dynamic Address Table also contains information about the aging time before a dynamic MAC address is erased, and includes parameters for querying and viewing the Dynamic Address list. The Current Address Table contains dynamic address parameters by which packets are directly forwarded to the ports.

To open the Dynamic Address Table, click Switch→Address Table→Dynamic Addresses Table in the tree view.

Figure 7-96. Dynamic Address Table

Address Aging (10-360) — Specifies the amount of time the MAC Address remains in the Dynamic Address Table before it is timed out if no traffic from the source is detected. The default value is 300 seconds.

Interface — Specifies the interface for which the table is queried. There are two interface types from which to select.

- **Port** — Specifies the port numbers for which the table is queried.
- **LAG** — Specifies the LAG for which the table is queried.
MAC Address — Specifies the MAC address for which the table is queried.
VLAN ID — The VLAN ID for which the table is queried.
Address Table Sort Key — Specifies the means by which the Dynamic Address Table is sorted.

Redefining the Aging Time
1. Open the Dynamic Address Table.
2. Define the Aging Time field.
3. Click Apply Changes.
   The aging time is modified, and the device is updated.

Querying the Dynamic Address Table
1. Open the Dynamic Address Table.
2. Define the parameter by which to query the Dynamic Address Table.
   Entries can be queried by Port, MAC Address, or VLAN ID.
3. Click Query.
   The Dynamic Address Table is queried.

Sorting the Dynamic Address Table
1. Open the Dynamic Address Table.
2. From the Address Table Sort Key drop-down menu, select whether to sort addresses by address, VLAN ID, or interface.
3. Click Query.
   The Dynamic Address Table is sorted.
Querying and Sorting Dynamic Addresses Using CLI Commands

The following table summarizes the equivalent CLI commands for querying and sorting dynamic addresses as displayed in the Dynamic Address Table.

Table 7-58. Query and Sort CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bridge aging-time seconds</code></td>
<td>Sets the address table aging time.</td>
</tr>
<tr>
<td>`show bridge address-table [vlan vlan] [ethernet interface</td>
<td>port-channel port-channel-number]`</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# bridge aging-time 250
Console (config)# exit
Console# show bridge address-table

Aging time is 250 sec

 vlan mac address port type
 ---- ----------- ---- ----
 1 00:60:70:4C:73:FF g8 dynamic
 1 00:60:70:8C:73:FF g8 dynamic
 200 00:10:0D:48:37:FF g8 static
```
Configuring GARP

Generic Attribute Registration Protocol (GARP) is a general-purpose protocol that registers any network connectivity or membership-style information. GARP defines a set of devices interested in a given network attribute, such as VLAN or Multicast address.

When configuring GARP, ensure the following:

- The leave time must be greater than or equal to three times the join time.
- The leave all time must be greater than the leave time.

Set the same GARP timer values on all Layer 2-connected devices. If the GARP timers are set differently on the Layer 2-connected devices, GARP application does not operate successfully.

To open the GARP page, click Switch → GARP in the tree view.

Defining GARP Timers

The GARP Timers page contains fields for enabling GARP on the device. To open the GARP Timers page, click Switch → GARP → GARP Timers in the tree view.

**Figure 7-97. GARP Timers**

- **Interface** — Determines if enabled on a port or on a LAG.
- **GARP Join Timer (10 - 2147483640)** — Time, in milliseconds, that PDUs are transmitted. The possible field value is 10-2147483640. The default value is 200 msec.
GARP Leave Timer (10 - 2147483640) — Time lapse, in milliseconds, that the device waits before leaving its GARP state. Leave time is activated by a Leave All Time message sent/received, and cancelled by the Join message received. Leave time must be greater than or equal to three times the join time. The possible field value is 0-2147483640. The default value is 600 msec.

GARP Leave All Timer (10 - 2147483640) — Time lapse, in milliseconds, that all devices wait before leaving the GARP state. The leave all time must be greater than the leave time. The possible field value is 0-2147483640. The default value is 10000 msec.

Defining GARP Timers

1. Open the GARP Timers page.
2. Complete the fields.
3. Click Apply Changes.

The GARP parameters are saved to the device.

Copying Parameters in the GARP Timers Table

1. Open the GARP Timers page.
2. Click Show All.
   The GARP Timers Table opens.
3. Select the interface type in the Copy Parameters from field.
4. Select an interface in either the Port or LAG drop-down menu.
5. The definitions for this interface is copied to the selected interfaces. See step 6.
6. Select the Copy to check box to define the interfaces to which the GARP timer definitions are copied, or click Select All to copy the definitions to all ports or LAGs.
7. Click Apply Changes.
   The parameters are copied to the selected port ports or LAGs in the GARP Timers Table, and the device is updated.

Defining GARP Timers Using CLI Commands

This table summarizes the equivalent CLI commands for defining GARP timers as displayed in the GARP Timers page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`garp timer {join</td>
<td>leave</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
cfg=console(config)# interface ethernet g1
cfg=console(config-if)# gvrp timer leave 900
cfg=console(config-if)# end
show gvrp configuration ethernet g1
```

GVRP Feature is currently Disabled on the device.
Maximum VLANs: 223

<table>
<thead>
<tr>
<th>Port(s)</th>
<th>GVRP-Status</th>
<th>Registration</th>
<th>Dynamic VLAN</th>
<th>Timers (milliseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>Disabled</td>
<td>Normal</td>
<td>Enabled</td>
<td>200 900 10000</td>
</tr>
</tbody>
</table>

console#
Configuring the Spanning Tree Protocol

Spanning Tree Protocol (STP) provides tree topography for any arrangement of bridges. STP also provides one path between end stations on a network, eliminating loops.

Loops occur when alternate paths exist between hosts. Loops in an extended network can cause bridges to forward traffic indefinitely, resulting in increased traffic and reducing network efficiency.

The devices support the following Spanning Tree protocols:

- **Classic STP** — Provides a single path between end stations, avoiding and eliminating loops. For more information on configuring Classic STP, see "Defining STP Global Settings".
- **Rapid STP** — Detects and uses of network topologies that provide faster spanning tree convergence, without creating forwarding loops. For more information on configuring Rapid STP, see "Configuring Rapid Spanning Tree".

To open the Spanning Tree page, click Switch → Spanning Tree in the tree view.

Defining STP Global Settings

The STP Global Settings page contains parameters for enabling and configuring STP operation on the device. To open the STP Global Settings page, click Switch → Spanning Tree → Global Settings in the tree view.

Figure 7-98. STP Global Settings

Spanning Tree State — Enables or disables Spanning Tree on the device. The possible field values are:
- **Enable** — Enables Spanning Tree
- **Disable** — Disables Spanning Tree

**STP Operation Mode** — The STP mode by which STP is enabled on the device. The possible field values are:

- **Classic STP** — Enables Classic STP on the device. This is the default value.
- **Rapid STP** — Enables Rapid STP on the device.

**Port Cost Method** — Determines the Spanning Tree default path cost method. The possible field values are:

- **Short** — Specifies 1 through 65535 range for port path costs. This is the default value.
- **Long** — Specifies 1 through 200000000 range for port path costs.

**BPDU Handling** — Determines how BPDU packets are managed when STP is disabled on the port/device. BPDUs are used to transmit spanning tree information. The possible field values are:

- **Filtering** — Filters BPDU packets when spanning tree is disabled on an interface.
- **Flooding** — Floods BPDU packets when spanning tree is disabled on an interface. This is the default value.

**Priority (0-)** — Specifies the bridge priority value. When switches or bridges are running STP, each is assigned a priority. After exchanging BPDUs, the switch with the lowest priority value becomes the Root Bridge. The default value is 32768. The bridge priority value is provided in increments of 4096 (4K increments). For example, 0, 4096, 8192, etc.

**Hello Time (1-10)** — Specifies the device Hello Time. The Hello Time indicates the amount of time in seconds a root bridge waits between configuration messages. The default is 2 seconds.

**Max Age (6-40)** — Specifies the device Maximum Age Time. The Maximum Age Time indicates the amount of time in seconds a bridge waits before sending configuration messages. The default max age is 20 seconds.

**Forward Delay (4-30)** — Specifies the device forward delay time. The Forward Delay Time indicates the amount of time in seconds a bridge remains in a listening and learning state before forwarding packets. The default is 8 seconds.

**Bridge ID** — Identifies the Bridge priority and MAC address.

**Root Bridge ID** — Identifies the Root Bridge priority and MAC address.

**Root Port** — The port number that offers the lowest cost path from this bridge to the Root Bridge. It is significant when the Bridge is not the Root. The default is zero.

**Root Path Cost** — The cost of the path from this bridge to the root.

**Topology Changes Counts** — Specifies the total amount of STP state changes that have occurred since the last reboot.
Last Topology Change — The amount of time that has elapsed since the bridge was initialized or reset, and the last topographic change occurred. The time is displayed in a day hour minute second format, for example, hour minutes and seconds.

Defining STP Global Parameters

1. Open the STP Global Settings page.
2. Select the port that needs to be enabled from the Select a Port drop-down menu.
3. Select Enable in the Spanning Tree State field.
4. Select the STP mode in the STP Operation Mode field, and define the bridge settings.
5. Click Apply Changes.

STP is enabled on the device.

Modifying STP Global Parameters

1. Open the STP Global Settings page.
2. Define the fields in the dialog.
3. Click Apply Changes.

The STP parameters are modified, and the device is updated.

Defining STP Global Parameters Using CLI Commands

The following table summarizes the equivalent CLI commands for defining STP global parameters as displayed in the STP Global Settings page.

Table 7-60. STP Global Parameter CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spanning-tree</td>
<td>Enables spanning tree functionality.</td>
</tr>
<tr>
<td>spanning-tree mode {stp</td>
<td>rstp}</td>
</tr>
<tr>
<td>spanning-tree priority priority</td>
<td>Configures the spanning tree priority.</td>
</tr>
<tr>
<td>spanning-tree hello-time seconds</td>
<td>Configures the spanning tree bridge Hello Time, which is how often the device broadcasts Hello messages to other switches.</td>
</tr>
<tr>
<td>spanning-tree max-age seconds</td>
<td>Configures the spanning tree bridge maximum age.</td>
</tr>
<tr>
<td>spanning-tree forward-time seconds</td>
<td>Configures the spanning tree bridge forward time, which is the amount of time a port remains in the listening and learning states before entering the forwarding state.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console(config)# spanning-tree
console(config)# spanning-tree mode rstp
console(config)# spanning-tree priority 12288
console(config)# spanning-tree hello-time 5
console(config)# spanning-tree max-age 15
console(config)# spanning-tree forward-time 25
console(config)# exit
console# show spanning-tree
```

Spanning tree enabled mode RSTP
Default port cost method: short

Root ID  Priority 12288
Address 00:e8:00:b4:c0:00
This switch is the root
Hello Time 5 sec  Max Age 15 sec  Forward Delay 25 sec

Number of topology changes 5 last change occurred 00:05:28 ago
Times: hold 1, topology change 40, notification 5
    hello 5, max age 15, forward delay 25
Defining STP Port Settings

The STP Port Settings page contains fields for assigning STP properties to individual ports. To open the STP Port Settings page, click Switch→Spanning Tree→Port Settings in the tree view.

Figure 7-99. STP Port Settings
Select a Port — Port on which STP is enabled.

STP — Enables or disables STP on the port.

Fast Link — When selected, enables Fast Link mode for the port. If Fast Link mode is enabled for a port, the Port State is automatically placed in the Forwarding state when the port link is up. Fast Link mode optimizes the time it takes for the STP protocol to converge. STP convergence can take 30-60 seconds in large networks.

Port State — The current port STP state. If enabled, the port state determines what forwarding action is taken on traffic. Possible port states are:

- **Disabled** — The port link is currently down.
- **Blocking** — The port is currently blocked and cannot be used to forward traffic or learn MAC addresses. Blocking is displayed when Classic STP is enabled.
- **Listening** — The port is currently in the listening mode. The port cannot forward traffic nor can it learn MAC addresses.
- **Learning** — The port is currently in the learning mode. The port cannot forward traffic however it can learn new MAC addresses.
- **Forwarding** — The port is currently in the forwarding mode. The port can forward traffic and learn new MAC addresses.

Speed — Speed at which the port is operating.

Path Cost (1-200000000) — The port contribution to the root path cost. The path cost is adjusted to a higher or lower value, and is used to forward traffic when a path being rerouted.

Default Path Cost — The default path cost of the port is automatically set by the port speed and the default path cost method.

The default values for long path costs are:

- Ethernet - 20000000
- Fast Ethernet - 200000
- Gigabit Ethernet - 20000

The default values for short path costs (short path costs are the default) are:

- Ethernet - 100
- Fast Ethernet - 19
- Gigabit Ethernet - 4
Priority (0-240, in steps of 16) — The priority value of the port. The priority value influences the port choice when a bridge has two ports connected in a loop. The priority value is between 0-240. The priority value is provided in increments of 16.

Designated Bridge ID — The bridge priority and the MAC Address of the designated bridge.

Designated Port ID — The selected port’s priority and interface.

Designated Cost — The cost of the port participating in the STP topology. Ports with a lower cost are less likely to be blocked if STP detects loops.

Forward Transitions — The number of times the port has changed from the Blocking state to the Forwarding state.

LAG — The LAG to which the port is attached.

**Enabling STP on a Port**

1. Open the STP Port Settings page.
2. Select Enabled in the STP Port Status field.
3. Define the Fast Link, Path Cost, and the Priority fields.
4. Click Apply Changes.
   
   STP is enabled on the port.

**Modifying STP Port Properties**

1. Open the STP Port Settings page.
3. Click Apply Changes.
   
   The STP port parameters are modified, and the device is updated.

**Displaying the STP Port Table**

1. Open the STP Port Settings page.
2. Click Show All.
   
   The STP Port Table opens.
**Defining STP Port Settings Using CLI Commands**

The following table summarizes the equivalent CLI commands for defining STP port parameters as displayed in the STP Port Settings page.

**Table 7-61. STP Port Settings CLI Commands**

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>spanning-tree disable</code></td>
<td>Disables spanning tree on a specific port.</td>
</tr>
<tr>
<td><code>spanning-tree cost</code></td>
<td>Configures the spanning tree cost contribution of a port.</td>
</tr>
<tr>
<td><code>spanning-tree port-priority</code></td>
<td>Configures port priority.</td>
</tr>
<tr>
<td><code>spanning-tree portfast</code></td>
<td>Enables PortFast mode.</td>
</tr>
<tr>
<td><code>show spanning-tree</code></td>
<td>Displays spanning tree configuration.</td>
</tr>
<tr>
<td><code>show spanning-tree ethernet</code></td>
<td></td>
</tr>
<tr>
<td><code>show spanning-tree port-channel</code></td>
<td></td>
</tr>
<tr>
<td><code>cost</code></td>
<td></td>
</tr>
<tr>
<td><code>priority</code></td>
<td></td>
</tr>
<tr>
<td><code>port-channel number</code></td>
<td></td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console(config)# interface ethernet g5
console(config-if)# spanning-tree disable
console(config-if)# spanning-tree cost 35000
console(config-if)# spanning-tree port-priority 96
console(config-if)# exit
console(config)# exit
console# show spanning-tree ethernet g5

Port g5 disabled
State: disabled
Port id: 96.5
Type: P2p (configured: Auto) STP
Designated bridge Priority : 32768
Designated port id: 96.5
Number of transitions to forwarding state: 0
BPDU: sent 0, received 0

console#
```
Defining STP LAG Settings
The STP LAG Settings page contains fields for assigning STP aggregating port parameters. To open the STP LAG Settings page, click Switch→Spanning Tree→LAG Settings in the tree view.

![STP LAG Settings](image)

Select a LAG — The user-defined LAG. For more information, see "Defining LAG Membership".

STP — Enables or disables STP on the LAG.

Fast Link — Enables Fast Link mode for the LAG. If Fast Link mode is enabled for a LAG, the LAG State is automatically placed in the Forwarding state when the LAG is up. Fast Link mode optimizes the time it takes for the STP protocol to converge. STP convergence can take 30-60 seconds in large networks.

LAG State — Current STP state of a LAG. If enabled, the LAG state determines what forwarding action is taken on traffic. If the bridge discovers a malfunctioning LAG, the LAG is placed in the Broken state. Possible LAG states are:

- Disabled — The LAG link is currently down.
- Blocking — The LAG is blocked and cannot be used to forward traffic or learn MAC addresses.
- Listening — The LAG is in the listening mode and cannot forward traffic or learn MAC addresses.
- Learning — The LAG is in the learning mode and cannot forward traffic, but it can learn new MAC addresses.
**Forwarding** — The LAG is currently in the forwarding mode, and it can forward traffic and learn new MAC addresses.

**Broken** — The LAG is currently malfunctioning and cannot be used for forwarding traffic.

**Path Cost (1-200000000)** — Amount the LAG contributes to the root path cost. The path cost is adjusted to a higher or lower value, and is used to forward traffic when a path being rerouted. The path cost has a value of 1 to 200000000. If the path cost method is short, the LAG cost default value is 4. If the path cost method is long, the LAG cost default value is 20000.

**Default Path Cost** — When selected, the LAG path cost returns to its default value.

**Priority (0-240, in steps of 16)** — The priority value of the LAG. The priority value influences the LAG choice when a bridge has two looped ports. The priority value is between 0-240, in increments of 16.

**Designated Bridge ID** — The bridge priority and the MAC Address of the designated bridge.

**Designated Port ID** — The port priority and interface number of the designated port.

**Designated Cost** — The cost of the designated bridge.

**Forward Transitions** — The number of times the LAG State has changed from the Blocking state to a Forwarding state.

**Modifying the LAG STP Parameters**

1. Open the STP LAG Settings page.
2. Select a LAG from the Select a LAG drop-down menu.
3. Modify the fields as desired.
4. Click Apply Changes.

The STP LAG parameters are modified, and the device is updated.

**Defining STP LAG Settings Using CLI Commands**

The following table summarizes the equivalent CLI commands for defining STP LAG settings.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spanning-tree</td>
<td>Enables spanning tree.</td>
</tr>
<tr>
<td>spanning-tree disable</td>
<td>Disables spanning tree on a specific LAG.</td>
</tr>
<tr>
<td>spanning-tree cost cost</td>
<td>Configures the spanning tree cost contribution of a LAG.</td>
</tr>
<tr>
<td>spanning-tree port-priority</td>
<td>Configures port priority.</td>
</tr>
</tbody>
</table>

---

250 | Configuring Device Information
The following is an example of the CLI commands:

```
console(config)# interface port-channel 1
console(config-if)# spanning-tree port-priority 16
```

### Configuring Rapid Spanning Tree

While Classic Spanning Tree guarantees preventing L2 forwarding loops in a general network topology, convergence can take up to 30-60 seconds. The convergence time is considered too long for many applications. When network topology allows, faster convergence may be possible. The Rapid Spanning Tree Protocol (RSTP) detects and uses of network topologies that provide faster convergence of the spanning tree, without creating forwarding loops.

RSTP has the following different port states:

- Disabled
- Learning
- Discarding
- Forwarding

Rapid Spanning Tree is enabled on the STP Global Settings page. To open the Rapid Spanning Tree (RSTP) page, click Switch→Spanning Tree→Rapid Spanning Tree in the tree view.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree</td>
<td>Displays spanning tree configuration.</td>
</tr>
<tr>
<td>[ethernet interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>port-channel port-channel-number]</td>
</tr>
<tr>
<td>show spanning-tree [detail] [active</td>
<td>Displays detailed spanning tree</td>
</tr>
<tr>
<td></td>
<td>blockedports]</td>
</tr>
</tbody>
</table>
Figure 7-101. Rapid Spanning Tree (RSTP)

*Interface* — Port or LAG on which Rapid STP is enabled.

*Role* — The port role assigned by the STP algorithm in order to provide STP paths. The possible field values are:

- **Root** — Provides the lowest cost path to forward packets to root device.
- **Designated** — The port or LAG via which the designated device is attached to the LAN.
- **Alternate** — Provides an alternate path to the root device from the root interface.
- **Backup** — Provides a backup path to the designated port path toward the Spanning Tree leaves. Backup ports occur only when two ports are connected in a loop. Backup ports also occur when a LAN has two or more connections connected to a shared segment.
- **Disabled** — The port is not participating in the Spanning Tree (the port’s link is down).

*Fast Link Operational Status* — Indicates if Fast Link is enabled or disabled for the port or LAG. If Fast Link is enabled for a port, the port is automatically placed in the forwarding state.

*Point-to-Point Admin Status* — Enables or disables the device to establish a point-to-point link, or specifies for the device to automatically establish a point-to-point link.

To establish communications over a point-to-point link, the originating PPP first sends Link Control Protocol (LCP) packets to configure and test the data link. After a link is established and optional facilities are negotiated as needed by the LCP, the originating PPP sends Network Control Protocols (NCP) packets to select and configure one or more network layer protocols. When each of the chosen network layer protocols has been configured, packets from each network layer
protocol can be sent over the link. The link remains configured for communications until explicit LCP or NCP packets close the link, or until some external event occurs. This is the actual device port link type. It may differ from the administrative state.

**Point-to-Point Operational Status** — The Point-to-Point operating state.

**Activate Protocol Migrational Test** — When selected, enables PPP sending Link Control Protocol (LCP) packets to configure and test the data link.

**Enabling RSTP**

1. Open the Rapid Spanning Tree (RSTP) page.
2. Define the Point-to-Point Admin, Point-to-Point Oper, and the Activate Protocol Migration fields.
3. Click Apply Changes.
   
   Rapid STP is enabled, and the device is updated.

**Defining Rapid STP Parameters Using CLI Commands**

The following table summarizes the equivalent CLI commands for defining Rapid STP parameters as displayed in the Rapid Spanning Tree (RSTP) page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spanning-tree link-type {point-to-point</td>
<td>Overrides the default link-type setting.</td>
</tr>
<tr>
<td>point</td>
<td>shared}</td>
</tr>
<tr>
<td>spanning tree mode {stp</td>
<td>rstp}</td>
</tr>
<tr>
<td>clear spanning-tree detected-protocols [ethernet interface</td>
<td>Restarts the protocol migration process.</td>
</tr>
<tr>
<td>port-channel port-channel-number]</td>
<td></td>
</tr>
<tr>
<td>show spanning-tree [ethernet interface</td>
<td>Displays spanning tree configuration.</td>
</tr>
<tr>
<td>port-channel port-channel-number]</td>
<td></td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console(config)# interface ethernet g5
Console(config-if)# spanning-tree link-type shared
```
Configuring VLANs

VLANs are logical subgroups of a Local Area Network (LAN) created via software rather than defining a hardware solution. VLANs combine user stations and network devices into a single domain regardless of the physical LAN segment to which they are attached. VLANs allow network traffic to flow more efficiently within subgroups. VLANs managed through software reduces the amount of time in which network changes are implemented.

VLANs have no minimum number of ports, and can be created per device or any other logical connection combination, as VLANs are software based and not defined by physical attributes.

VLANs function at Layer 2. Since VLANs isolate traffic within the VLAN, a Layer 3 router functioning router is needed to allows traffic flow between VLANs. Layer 3 routers identify segments and coordinate with VLANs. VLANs are broadcast and Multicast domains. Broadcast and Multicast traffic is transmitted only in the VLAN in which the traffic is generated.

VLAN tagging provides a method of transferring VLAN information between VLAN groups. VLAN tagging attaches a tag to packet headers. The VLAN tag indicates to which VLAN the packet belongs. VLAN tags are attached to the packet by either the end station or by the network device. VLAN tags also contains VLAN network priority information. Combining VLANs and GVRP enables the automatic dispersal of VLAN information. To open the VLAN page, click Switch→VLAN in the tree view.
Defining VLAN Members

The VLAN Membership page contains fields for defining VLAN groups. The device supports the mapping of 4094 VLAN IDs to 256 VLANs. All ports must have a defined PVID. If no other value is configured the default VLAN PVID is used. VLAN number 1 is the default VLAN, and cannot be deleted from the system. To open the VLAN Membership page, click Switch→VLAN→VLAN Membership in the tree view.

Figure 7-102. VLAN Membership Page

Show VLAN — Lists and displays specific VLAN information according to VLAN ID or VLAN name.

VLAN Name — The user-defined VLAN name.

Status — The VLAN type. Possible values are:
  - Dynamic — The VLAN was dynamically created through GVRP.
  - Static — The VLAN is user-defined.
  - Default — The VLAN is the default VLAN.

Unauthorized Users — Enables or disables unauthorized users from accessing a VLAN.

Remove VLAN — When selected, removes the VLAN from the VLAN Membership Table.
Adding New VLANs
1. Open the VLAN Membership page.
2. Click Add.
   The Create New VLAN page opens.
3. Enter the VLAN ID and name.
4. Click Apply Changes.
   The new VLAN is added, and the device is updated.

Modifying VLAN Membership Groups
1. Open the VLAN Membership page.
2. Select a VLAN from the Show VLAN drop-down menu.
3. Modify the fields as desired.
4. Click Apply Changes.
   The VLAN membership information is modified, and the device is updated.

Deleting VLAN Membership Groups
1. Open the VLAN Membership page.
2. Select a VLAN in the Show VLAN field.
3. Select the Remove VLAN check box.
4. Click Apply Changes.
   The selected VLAN is deleted, and the device is updated.

Defining VLAN Membership Groups Using CLI Commands
The following table summarizes the equivalent CLI commands for defining VLAN membership groups as displayed in the VLAN Membership page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan database</td>
<td>Enters the interface configuration (VLAN) mode.</td>
</tr>
<tr>
<td>vlan (vlan-range)</td>
<td>Creates a VLAN.</td>
</tr>
<tr>
<td>name string</td>
<td>Adds a name to a VLAN.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```console
console(config)# vlan database
console(config-vlan)# vlan 1972
console(config-vlan)# exit
console(config)# interface vlan 1972
console(config-if)# name Marketing
console(config-if)# exit
console(config)#
```

**VLAN Port Membership Table**

The **VLAN Port Membership Table** contains a Port Table for assigning ports to VLANs. Ports are assigned VLAN membership by toggling through the Port Control settings. Ports can have the following values:

<table>
<thead>
<tr>
<th>Port Control</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>The interface is a member of a VLAN. All packets forwarded by the interface are tagged. The packets contain VLAN information.</td>
</tr>
<tr>
<td>U</td>
<td>The interface is a VLAN member. Packets forwarded by the interface are untagged.</td>
</tr>
<tr>
<td>F</td>
<td>The interface is denied membership to a VLAN.</td>
</tr>
<tr>
<td>Blank</td>
<td>The interface is not a VLAN member. Packets associated with the interface are not forwarded.</td>
</tr>
</tbody>
</table>

**NOTE:** Ports which are LAG members are not displayed in the VLAN Port Membership Table.
The VLAN Port Membership Table displays the ports and the ports states, as well as LAGs.

Assigning Ports to a VLAN Group

1. Open the VLAN Membership page.
2. Click the VLAN ID or VLAN Name option button and select a VLAN from the drop-down menu.
3. Select a port in the Port Membership Table, and assign the port a value.
4. Click Apply Changes.

The port is assigned to the VLAN group, and the device is updated.

Deleting a VLAN

1. Open the VLAN Membership page.
2. Click the VLAN ID or VLAN Name option button and select a VLAN from the drop-down menu.
3. Select the Remove VLAN check box.
4. Click Apply Changes.

The selected VLAN is deleted, and the device is updated.

Assigning Ports to VLAN Groups Using CLI Commands

The following table summarizes the equivalent CLI commands for assigning ports to VLAN groups.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport general acceptable-frame-types tagged-only</td>
<td>Discards untagged frames at ingress.</td>
</tr>
<tr>
<td>switchport forbidden vlan {add vlan-list</td>
<td>remove vlan-list}</td>
</tr>
<tr>
<td>switchport mode {access</td>
<td>trunk</td>
</tr>
<tr>
<td>switchport access vlan vlan-id</td>
<td>Configures the VLAN ID when the interface is in access mode.</td>
</tr>
<tr>
<td>switchport trunk allowed vlan {add vlan-list</td>
<td>remove vlan-list}</td>
</tr>
<tr>
<td>switchport trunk native vlan vlan-id</td>
<td>Defines the port as a member of the specified VLAN, and the VLAN ID as the &quot;port default VLAN ID (PVID)&quot;.</td>
</tr>
</tbody>
</table>
### Table 7-66. Port-to-VLAN Group Assignments CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport general allowed vlan add</td>
<td>Adds or removes VLANs from a general port.</td>
</tr>
<tr>
<td>vlan-list [tagged</td>
<td>untagged]</td>
</tr>
<tr>
<td>switchport general pvid vlan-id</td>
<td>Configures the PVID when the interface is in general mode.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```plaintext
Console (config)# vlan database
Console (config-vlan)# vlan 23-25
Console (config-vlan)# exit
Console (config)# interface vlan 23
Console (config-if)# name Marketing
Console (config-if)# exit
Console (config)# interface ethernet g8
Console (config-if)# switchport mode access
Console (config-if)# switchport access vlan 23

Console (config-if)# exit
Console (config)# interface ethernet g9
Console (config-if)# switchport mode trunk
Console (config-if)# switchport mode trunk allowed vlan add 23-25

Console (config-if)# exit
Console (config)# interface ethernet g10
Console (config-if)# switchport mode general
Console (config-if)# switchport general allowed vlan add 23,25 tagged
Console (config-if)# switchport general pvid 25
```
Defining VLAN Ports Settings

The VLAN Port Settings page contains fields for managing ports that are part of a VLAN. The port default VLAN ID (PVID) is configured on the VLAN Port Settings page. All untagged packets arriving to the device are tagged by the ports PVID.

To open the VLAN Port Settings page, click Switch→VLAN→Port Settings in the tree view.

Figure 7-103. VLAN Port Settings

Port — The port number included in the VLAN.

Port VLAN Mode — The port mode. Possible values are:

- General — The port belongs to VLANs, and each VLAN is user-defined as tagged or untagged (full 802.1Q mode).
- Access — The port belongs to a single untagged VLAN. When a port is in Access mode, the packet types which are accepted on the port cannot be designated. Ingress filtering cannot be enabled/disabled on an access port.
- Trunk — The port belongs to VLANs in which all ports are tagged (except for one port that can be untagged).

PVID — Assigns a VLAN ID to untagged packets. The possible values are 1-4094. VLAN 4095 is defined as per standard and industry practice as the discard VLAN. Packets classified to the Discard VLAN are dropped.

Frame Type — Packet type accepted on the port. Possible values are:

- Admit Tag Only — Only tagged packets are accepted on the port.
- Admit All — Both tagged and untagged packets are accepted on the port.
Ingress Filtering — Enables or disables Ingress filtering on the port. Ingress filtering discards packets that are destined to VLANs of which the specific LAG is not a member.

Current Reserve VLAN — The VLAN currently designated by the system as the reserved VLAN.

Reserve VLAN for Internal Use — The VLAN selected by the user to be the reserved VLAN if not in use by the system.

Assigning Port Settings

1. Open the VLAN Port Settings page.
2. Select the port to which settings need to be assigned from the Port drop-down menu.
3. Complete the remaining fields on the page.
4. Click Apply Changes.
   The VLAN port settings are defined, and the device is updated.

Displaying the VLAN Port Table

1. Open the VLAN Port Settings page.
2. Click Show All.
   The VLAN Port Table opens.

Assigning Ports to VLAN Groups Using CLI Commands

The following table summarizes the equivalent CLI commands for assigning ports to VLAN groups.

Table 7-67. VLAN Port CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport mode {access</td>
<td>trunk</td>
</tr>
<tr>
<td>switchport trunk native vlan vlan-id</td>
<td>Defines the port as a member of the specified VLAN, and the VLAN ID as the &quot;port default VLAN ID (PVID)&quot;.</td>
</tr>
<tr>
<td>switchport general pvid vlan-id</td>
<td>Configure the Port VLAN ID (PVID) when the interface is in general mode.</td>
</tr>
<tr>
<td>switchport general allowed vlan add vlan-list [tagged</td>
<td>untagged]</td>
</tr>
<tr>
<td>switchport general acceptable-frame-types tagged-only</td>
<td>Discards untagged packets at ingress.</td>
</tr>
<tr>
<td>switchport general ingress-filtering disable</td>
<td>Disables port ingress filtering.</td>
</tr>
</tbody>
</table>
Table 7-67. VLAN Port CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shutdown</td>
<td>Disables interfaces.</td>
</tr>
<tr>
<td>set interface active</td>
<td>Reactivates an interface that is shutdown due to security reasons.</td>
</tr>
<tr>
<td>(ethernet interface</td>
<td>port-channel port-channel-number )</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# interface range ethernet g18-20
Console (config-if)# switchport mode access
Console (config-if)# switchport general pvid 234
Console (config-if)# switchport general allowed vlan add 1,2,5,6 tagged
Console (config-if)# switchport general ingress-filtering disable
```
Defining VLAN LAG Settings

The VLAN LAG Setting page provides parameters for managing LAGs that are part of a VLAN. VLANs can either be composed of individual ports or of LAGs. Untagged packets entering the device are tagged with the LAGs ID specified by the PVID. To open the VLAN LAG Setting page, click Switch→VLAN→LAG Settings in the tree view.

Figure 7-104. VLAN LAG Setting

LAG — The LAG number included in the VLAN.

LAG VLAN Mode — The LAG VLAN mode. Possible values are:

- **General** — The LAG belongs to VLANs, and each VLAN is user-defined as tagged or untagged (full 802.1Q mode).
- **Access** — The LAG belongs to a single, untagged VLAN.
- **Trunk** — The LAG belongs to VLANs in which all ports are tagged (except for an optional single native VLAN).

PVID — Assigns a VLAN ID to untagged packets. The possible field values are 1-4095. VLAN 4095 is defined as per standard and industry practice, as the discard VLAN. Packets classified to this VLAN are dropped.

Frame Type — Packet type accepted by the LAG. Possible values are:

- **Admit Tag Only** — Only tagged packets are accepted by the LAG.
- **Admit All** — Tagged and untagged packets are both accepted by the LAG.
**Ingress Filtering** — Enables or disables Ingress filtering by the LAG. Ingress filtering discards packets that are destined to VLANs of which the specific port is not a member.

**Current Reserve VLAN** — The VLAN currently designated as the reserved VLAN.

**Reserve VLAN for Internal Use** — The VLAN that is designated as the reserved VLAN after the device is reset.

Assigning VLAN LAG Settings:
1. Open the **VLAN LAG Setting** page.
2. Select a LAG from the LAG drop-down menu and complete the fields on the page.
3. Click **Apply Changes**.

   The VLAN LAG parameters are defined, and the device is updated.

**Displaying the VLAN LAG Table**
1. Open the **VLAN LAG Setting** page.
2. Click **Show All**.

   The **VLAN LAG Table** opens.

**Assigning LAGs to VLAN Groups Using CLI Commands**

The following table summarizes the equivalent CLI commands for assigning LAGs to VLAN groups as displayed in the **VLAN LAG Setting** page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport mode {access</td>
<td>trunk</td>
</tr>
<tr>
<td>switchport trunk native vlan</td>
<td>Defines the port as a member of the specified VLAN, and the VLAN ID as the port default VLAN ID (PVID).</td>
</tr>
<tr>
<td>vlan-id</td>
<td></td>
</tr>
<tr>
<td>switchport general pvid vlan-id</td>
<td>Configure the Port VLAN ID (PVID) when the interface is in general mode.</td>
</tr>
<tr>
<td>switchport general allowed vlan</td>
<td>Adds or removes VLANs from a general port.</td>
</tr>
<tr>
<td>add vlan-list [tagged</td>
<td>untagged]</td>
</tr>
<tr>
<td>switchport general acceptable-frame-type tagged-only</td>
<td>Discards untagged packets at ingress.</td>
</tr>
<tr>
<td>switchport general ingress-filtering disable</td>
<td>Disables port ingress filtering.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console(config)# interface port-channel 1
console(config-if)# switchport mode access
console(config-if)# switchport access vlan 2
console(config-if)# exit

console(config)# interface port-channel 2
console(config-if)# switchport mode general
console(config-if)# switchport general allowed vlan add 2-3 tagged
console(config-if)# switchport general pvid 2
console(config-if)# switchport general acceptable-frame-type tagged-only
console(config-if)# switchport general ingress-filtering disable
console(config-if)# exit

console(config)# interface port-channel 3
console(config-if)# switchport mode trunk
console(config-if)# switchport trunk native vlan 3
console(config-if)# switchport trunk allowed vlan add 2
console(config-if)# exit
```
Defining VLAN Protocol Groups

The **Protocol Group** page provides parameters for configuring frame types to specific protocol groups. To open the **Protocol Group** page, click **Switch→VLAN→Protocol Group** in the tree view.

**Figure 7-105. Protocol Group**

![Protocol Group Page](image)

**Frame Type** — The packet type. Possible field values are Ethernet, RFC1042, and LLC Other.

**Protocol Value** — User-defined protocol name.

**Ethernet-Based Protocol Value** — The Ethernet protocol group type. The possible field values are IP, IPX, and IPV6.

**Protocol Group ID** — The VLAN Group ID number.

**Remove** —

**Adding a Protocol Group**

1. Open the **Protocol Group** page.
2. Click Add.
   
   The **Add Protocol to Group** page opens.
3. Complete the fields on the page.
4. Click **Apply Changes**.
   
   The protocol group is assigned, and the device is updated.
Assigning VLAN Protocol Group Settings
1. Open the Protocol Group page.
2. Complete the fields on the page.
3. Click Apply Changes.
   The VLAN protocol group parameters are defined, and the device is updated.

Removing Protocols From the Protocol Group Table
1. Open the Protocol Group page.
2. Click Show All.
   The Protocol Group Table opens.
3. Select Remove for the protocol groups that need to be removed.
4. Click Apply Changes.
   The protocol is removed, and the device is updated.

Defining VLAN Protocol Groups Using CLI Commands
The following table summarizes the equivalent CLI commands for configuring Protocol Groups.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map protocol protocol [encapsulation]</td>
<td>protocols-group group</td>
</tr>
</tbody>
</table>

The following example maps ip-arp protocol to group "213":

```
Console (config)# vlan database
Console (config-vlan)# map protocol ip-arp protocols-group 213
```
Adding Protocol Ports

The Protocol Port page adds interfaces to Protocol groups. To open the Protocol Port page, click Switch→VLAN→Protocol Port in the tree view.

![Figure 7-106. Protocol Port](image)

**Interface** — Port or LAG number added to a protocol group.

**Group ID** — Protocol group ID to which the interface is added. Protocol group IDs are defined in the Protocol Group Table.

**VLAN ID (1-4095)** — Attaches the interface to a user-defined VLAN ID. The VLAN ID is defined on the Create a New VLAN page. Protocol ports can either be attached to a VLAN ID or a VLAN name.

- **NOTE:** VLAN 4095 is the discard VLAN.

Adding a New Protocol Port

- **NOTE:** Protocol ports can be defined only on ports that are defined as General in the VLAN Port Settings page.

1. Open the Protocol Port page.
2. Click Add.
   - The Add Protocol Port page opens.
3. Complete the fields in the dialog.
4. Click Apply Changes.
   - The new VLAN protocol group is added to the Protocol Port Table, and the device is updated.
Defining Protocol Ports Using CLI Commands

The following table summarizes the equivalent CLI command for defining Protocol Ports.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport general map protocols-group group vlan vlan-id</td>
<td>Sets a protocol-based classification rule.</td>
</tr>
</tbody>
</table>

The following example sets a protocol-based classification rule of protocol group 1 to VLAN 8:

```
Console (config-if)# switchport general map protocols-group 1 vlan 8
```

Configuring GVRP

GARP VLAN Registration Protocol (GVRP) is specifically provided for automatic distribution of VLAN membership information among VLAN-aware bridges. GVRP allows VLAN-aware bridges to automatically learn VLANs to bridge ports mapping, without having to individually configure each bridge and register VLAN membership.

To ensure the correct operation of the GVRP protocol, it is advised to set the maximum number of GVRP VLANs equal to a value which significantly exceeds the sum of:

- The number of all static VLANs both currently configured and expected to be configured.
- The number of all dynamic VLANs participating in GVRP, both currently configured (initial number of dynamic GVRP VLANs is 128) and expected to be configured.
The GVRP Global Parameters page enables GVRP globally. GVRP can also be enabled on a per-interface basis. To open the GVRP Parameters page, click Switch→VLAN→GVRP Parameters in the tree view.

Figure 7-107. GVRP Parameters

GVRP Global Status — Enables or disables GVRP on the device. GVRP is disabled by default.

Interface — The port or LAG for which GVRP is enabled.

GVRP State — Enables or disables GVRP on an interface.

Dynamic VLAN Creation — Enables or disables VLAN creation through GVRP.

GVRP Registration — The GVRP Registration status.

Enabling GVRP on the Device

1. Open the GVRP Global Parameters page.
2. Select Enable in the GVRP Global Status field.
3. Click Apply Changes.

GVRP is enabled on the device.

Enabling VLAN Registration Through GVRP

1. Open the GVRP Global Parameters page.
2. Select Enable in the GVRP Global Status field for the desired interface.
3. Select Enable in the GVRP Registration field.
4. Click Apply Changes.
GVRP VLAN Registration is enabled on the port, and the device is updated.

**Configuring GVRP Using CLI Commands**

The following table summarizes the equivalent CLI commands for configuring GVRP as displayed in the GVRP Global Parameters page.

**Table 7-71. GVRP Global Parameters CLI Commands**

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gvrp enable (global)</code></td>
<td>Enables GVRP globally.</td>
</tr>
<tr>
<td><code>gvrp enable (interface)</code></td>
<td>Enables GVRP on an interface.</td>
</tr>
<tr>
<td><code>gvrp vlan-creation-forbid</code></td>
<td>Enables or disables dynamic VLAN creation.</td>
</tr>
<tr>
<td><code>gvrp registration-forbid</code></td>
<td>De-registers all dynamic VLANs, and prevents dynamic VLAN registration on the port.</td>
</tr>
<tr>
<td>`show gvrp configuration [ethernet interface</td>
<td>port-channel port-channel-number]`</td>
</tr>
<tr>
<td>`show gvrp error-statistics [ethernet interface</td>
<td>port-channel port-channel-number]`</td>
</tr>
<tr>
<td>`show gvrp statistics [ethernet interface</td>
<td>port-channel port-channel-number]`</td>
</tr>
<tr>
<td>`clear gvrp statistics [ethernet interface</td>
<td>port-channel port-channel-number]`</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:
console(config)# gvrp enable
console(config)# interface ethernet g1
console(config-if)# gvrp enable
console(config-if)# gvrp vlan-creation-forbid
console(config-if)# gvrp registration-forbid
console(config-if)# end
console# show gvrp configuration

GVRP Feature is currently Enabled on the device.
Maximum VLANs: 223

<table>
<thead>
<tr>
<th>Port(s)</th>
<th>GVRP-Status</th>
<th>Registration</th>
<th>Dynamic VLAN Creation</th>
<th>Timers (milliseconds)</th>
<th>Leave</th>
<th>Leave All</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>Enabled</td>
<td>Forbidden</td>
<td>Disabled</td>
<td>200</td>
<td>900</td>
<td>10000</td>
</tr>
<tr>
<td>g2</td>
<td>Disabled</td>
<td>Normal</td>
<td>Enabled</td>
<td>200</td>
<td>600</td>
<td>10000</td>
</tr>
</tbody>
</table>
Aggregating Ports

Port Aggregation optimizes port usage by linking a group of ports together to form a single Link Aggregated Groups (LAGs). Port Aggregation multiplies the bandwidth between the devices, increases port flexibility, and provides link redundancy. The device supports up to eight LAGs per system, and eight ports per LAG per device.

Each LAG is composed of ports of the same speed, set to full-duplex operations. Ports in a LAG, can be of different media types (UTP/Fiber, or different fiber types), provided they operate at the same speed.

Aggregated Links can be assigned manually or automatically by enabling Link Aggregation Control Protocol (LACP) on the relevant links. The device provides LAG Load Balancing based on both source MAC addresses and destination MAC addresses.

Aggregated Links are treated by the system as a single logical port. Specifically, the Aggregated Link has similar port attributes to a non-aggregated port, including auto-negotiation, speed, Duplex setting, etc.

The device supports both static LAGs and Link Aggregation Control Protocol (LACP) LAGs. LACP LAG negotiate Aggregated Port links with other LACP ports located on a different device. If the other device ports are also LACP ports, the devices establish a LAG between them.

The following guidelines should be followed when adding ports to a LAG:

- There is no Layer 3 interface defined on the port.
- The port does not belong to any VLAN.
- The port does not belong to any other LAG.
- The port is not a mirrored port.
- The port’s 802.1p priority is equal to LAGs 802.1p priority.
- QoS Trust is not disabled on the port.
- GVRP is not enabled.

**NOTE:** Ports can be configured as LACP ports only if the ports are not part of a previously configured LAG.

The device uses a hash function to determine which frames are carried on which aggregated-link member. The hash function statistically load-balances the aggregated link members. The device considers an Aggregated Link as a single logical port.
Each Aggregated Link has an Aggregated Link Port Type, including Gigabit Ethernet ports. Ports can be added to an Aggregated Link only if they are the same port type. When ports are removed from an Aggregated Links, the ports revert to the original port settings. To open the Link Aggregation page, click Switch→Link Aggregation in the tree view.

Defining LACP Parameters

The LACP Parameters page contains fields for configuring LACP LAGs. Aggregate ports can be linked into link-aggregation port-groups. Each group is comprised of ports with the same speed.

Aggregated Links can be manually setup or automatically established by enabling Link Aggregation Control Protocol (LACP) on the relevant links. To open the LACP Parameters page, click Switch→Link Aggregation→LACP Parameters in the tree view.

Figure 7-108. LACP Parameters

LACP System Priority (1-65535) — The LACP priority value for global settings. The possible range is 1-65535. The default value is 1.
Select a Port — The port number to which timeout and priority values are assigned.
LACP Port Priority (1-65535) — LACP priority value for the port.
LACP Timeout — Administrative LACP timeout. The possible field values are:
    Short — Specifies a short timeout value.
    Long — Specifies a long timeout value.
Defining Link Aggregation Global Parameters

1. Open the LACP Parameters page.
2. Complete the LACP System Priority field.
3. Click Apply Changes.
   The parameters are defined, and the device is updated.

Defining Link Aggregation Port Parameters

1. Open the LACP Parameters page.
2. Complete the fields in the Port Parameters area.
3. Click Apply Changes.
   The parameters are defined, and the device is updated.

Displaying the LACP Parameters Table

1. Open the LACP Parameters page.
2. Click Show All.
   The LACP Parameters Table opens.

Configuring LACP Parameters Using CLI Commands

The following table summarizes the equivalent CLI commands for configuring LACP parameters as displayed in the LACP Parameters page.

Table 7-72. LACP Parameters CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lACP system-priority value</td>
<td>Configures the system priority.</td>
</tr>
<tr>
<td>lACP port-priority value</td>
<td>Configures the priority value for physical ports.</td>
</tr>
<tr>
<td>lACP timeout {long</td>
<td>short}</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
Console (config)# lACP system-priority 120
Console (config)# interface ethernet g1
Console (config-if)# lACP port-priority 247
Console (config-if)# lACP timeout long
Console (config-if)# end
Console# show lACP ethernet g1 statistics
Port g1 LACP Statistics:
LACP PDUs sent:2
LACP PDUs received:2
```
Defining LAG Membership

The LAG Membership page contains fields for assigning ports to LAGs. LAGs can include up to 8 ports. When a port is added to a LAG, the port acquires the LAG’s properties.

The LAG Membership page contains fields for assigning ports to LAGs. To open the LAG Membership page, click Switch→Link Aggregation→LAG Membership in the tree view.

Figure 7-109. LAG Membership

LACP — Aggregates the port to a LAG, using LACP.
LAG — Adds a port to a LAG, and indicates the specific LAG to which the port belongs.

Configuring a Port to a LAG or LACP

1. Open the LAG Membership page.
2. In the LAG row (the second row), toggle the button to a specific number to aggregate or remove the port to that LAG number.
3. In the LACP row (the first row), toggle the button under the port number to assign either the LACP or the static LAG.
4. Click Apply Changes.
   The port is added to the LAG or LACP, and the device is updated.
Assigning Ports to LAGs Using CLI Commands

The following table summarizes the equivalent CLI commands for assigning ports to LAGs as displayed in the LAG Membership page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| interface port-channel port-
channel-number                      | Enters the interface configuration mode of a specific port-channel.         |
| channel-group port-
channel-number mode {on | auto}                        | Associates a port with a port-channel. Use the no form of this command to remove the channel-group configuration from the interface. |
| show interfaces port-channel     | Displays port-channel information.                                         |

The following is an example of the CLI commands:

```
console# config
console(config)# interface ethernet g1
console(config-if)# channel-group 1 mode on
console(config-if)# 01-Jan-2000 01:47:18 %LINK-W-Down: ch1
console(config-if)#
```

Multicast Forwarding Support

Multicast forwarding allows a single packet to be forwarded to multiple destinations. L2 Multicast service is based on L2 switch receiving a single packet addressed to a specific Multicast address. Multicast forwarding creates copies of the packet, and transmits the packets to the relevant ports.

The device supports:

- **Forwarding L2 Multicast Packets** — Enabled by default, and not configurable.

  **NOTE:** The system supports Multicast filtering for 63 Multicast groups.

- **Filtering L2 Multicast Packets** — Enables forwarding of Layer 2 packets to interfaces. If Multicast filtering is disabled, Multicast packets are flooded to all relevant ports.

To open the Multicast Support page, click Switch→Multicast Support in the tree view.

Defining Multicast Global Parameters
Layer 2 switching forwards Multicast packets to all relevant VLAN ports by default, treating the packet as a Multicast transmission. While this is functional, in the sense that all relevant ports/nodes receive a copy of the frame, it is potentially wasteful as ports/nodes may receive irrelevant frames only needed by a subset of the ports of that VLAN. Multicast forwarding filters enable forwarding of Layer 2 packets to port subsets, defined in the Multicast filter database.

When IGMP snooping is enabled globally, the switching ASIC is programmed to forward all IGMP packets to the CPU. The CPU analyzes the incoming packets and determines which ports are to join which Multicast groups, which ports have Multicast routers generating IGMP queries, and what routing protocols are forwarding packets and Multicast traffic. Ports requesting to join a specific Multicast group issues an IGMP report specifying that Multicast group. This results in the creation of the Multicast filtering database.

The Multicast Global Parameters page contains fields for enabling IGMP Snooping on the device. To open the Multicast Global Parameters page, click Switch→Multicast Support→Global Parameters in the tree view.

Figure 7-110. Multicast Global Parameters

Bridge Multicast Filtering — Enables or disables bridge Multicast filtering. Disabled is the default value.

IGMP Snooping Status — Enables or disables IGMP Snooping on the device. Disabled is the default value.

Enabling Bridge Multicast Filtering on the Device

1. Open the Multicast Global Parameters page.
2. Select Enable in the Bridge Multicast Filtering field.
3. Click Apply Changes.
Bridge Multicast is enabled on the device.

**Enabling IGMP Snooping on the Device**

1. Open the Multicast Global Parameters page.
2. Select Enable in the IGMP Snooping Status field.
3. Click Apply Changes.

IGMP Snooping is enabled on the device.

**Enabling Multicast Forwarding and IGMP Snooping Using CLI Commands**

The following table summarizes the equivalent CLI commands for enabling Multicast forwarding and IGMP Snooping as displayed on the Multicast Global Parameters page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge multicast filtering</td>
<td>Enables filtering of Multicast addresses.</td>
</tr>
<tr>
<td>ip igmp snooping</td>
<td>Enables Internet Group Membership Protocol (IGMP) snooping.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# bridge multicast filtering
Console (config)# ip igmp snooping
```
Adding Bridge Multicast Address Members

The Bridge Multicast Group page displays the ports and LAGs attached to the Multicast service group in the Ports and LAGs tables. The Port and LAG tables also reflect the manner in which the port or LAGs joined the Multicast group. Ports can be added either to existing groups or to new Multicast service groups. The Bridge Multicast Group page permits new Multicast service groups to be created. The Bridge Multicast Group page also assigns ports to a specific Multicast service address group.

To open the Bridge Multicast Group page, click Switch→Multicast Support→Bridge Multicast Address in the tree view.

Figure 7-111. Bridge Multicast Group

VLAN ID — Identifies a VLAN and contains information about the Multicast group address.
Bridge Multicast Address — Identifies the Multicast group MAC address/IP address.
Remove — When selected, removes a Bridge Multicast address.
Ports — Port that can be added to a Multicast service.
LAGs — LAGs that can be added to a Multicast service.

The following table contains the IGMP port and LAG members management settings:
Adding Bridge Multicast Addresses

1. Open the Bridge Multicast Group page.
2. Click Add.
   The Add Bridge Multicast Group page opens:

**Figure 7-112. Add Bridge Multicast Group**

3. Define the VLAN ID and New Bridge Multicast Address fields.
4. Toggle a port to S to join the port to the selected Multicast group.
5. Toggle a port to F to forbid adding specific Multicast addresses to a specific port.

### Table 7-75. IGMP Port/LAG Members Table Control Settings

<table>
<thead>
<tr>
<th>Port Control</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>The port/LAG has joined the Multicast group dynamically in the Current Row.</td>
</tr>
<tr>
<td>S</td>
<td>Attaches the port to the Multicast group as static member in the Static Row. The port/LAG has joined the Multicast group statically in the Current Row.</td>
</tr>
<tr>
<td>F</td>
<td>Forbidden.</td>
</tr>
<tr>
<td>Blank</td>
<td>The port is not attached to a Multicast group.</td>
</tr>
</tbody>
</table>
6 Click Apply Changes.
   The bridge Multicast address is assigned to the Multicast group, and the device is updated.

**Defining Ports to Receive Multicast Service**

1 Open the Bridge Multicast Group page.
2 Define the VLAN ID and the Bridge Multicast Address fields.
3 Toggle a port to S to join the port to the selected Multicast group.
4 Toggle a port to F to forbid adding specific Multicast addresses to a specific port.
5 Click Apply Changes.
   The port is assigned to the Multicast group, and the device is updated.

**Assigning LAGs to Receive Multicast Service**

1 Open the Bridge Multicast Group page.
2 Define the VLAN ID and the Bridge Multicast Address fields.
3 Toggle the LAG to S to join the LAG to the selected Multicast group.
4 Toggle the LAG to F to forbid adding specific Multicast addresses to a specific LAG.
5 Click Apply Changes.
   The LAG is assigned to the Multicast group, and the device is updated.

**Managing Multicast Service Members Using CLI Commands**

The following table summarizes the equivalent CLI commands for managing Multicast service members as displayed in the Bridge Multicast Group page.

<table>
<thead>
<tr>
<th>Table 7-76. Multicast Service Member CLI Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CLI Command</strong></td>
</tr>
<tr>
<td>bridge multicast address {mac-multicast-address</td>
</tr>
<tr>
<td>[ip-multicast-address}} ([add</td>
</tr>
<tr>
<td>interface-list</td>
</tr>
<tr>
<td>bridge multicast forbidden address {mac-multicast-address</td>
</tr>
<tr>
<td>[ip-multicast-address}[add</td>
</tr>
<tr>
<td>interface-list</td>
</tr>
<tr>
<td>show bridge multicast address-table [vlan vlan-id] [address mac-multicast-address</td>
</tr>
<tr>
<td>[ip-multicast-address][format ip</td>
</tr>
<tr>
<td>[mac]}</td>
</tr>
</tbody>
</table>

284 | Configuring Device Information
The following is an example of the CLI commands:

```
Console> enable
Console# config
console(config)#vlan database
console(config-if)#vlan 8
console(config-if)#exit
console(config)#interface range ethernet g1-9
console(config-if)# switchport mode general
console(config-if)# switchport general allow vlan add 8
console(config)#interface vlan 8
console (config-if)# exit
Console(config-if)# bridge multicast address 0100.5e02.0203 add ethernet g1,g2
Console(config-if)# exit
Console(config)# exit
Console # show bridge multicast address-table

Vlan | MAC Address | Type | Ports
---- | -------------- | ---------- | -----
 1 | 0100.5e02.0203 | static | g1, g2
19 | 0100.5e02.0208 | static | g1-8
19 | 0100.5e02.0208 | dynamic | g9-11

Forbidden ports for multicast addresses:

Vlan | MAC Address | Ports
---- | ----------- | -----
 1 | 0100.5e02.0203 | g8
19 | 0100.5e02.0208 | g8
```
**Console** # `show bridge multicast address-table format ip`

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224-239.130</td>
<td>2.2.3</td>
<td>g1, g2</td>
</tr>
<tr>
<td>19</td>
<td>224-239.130</td>
<td>2.2.8</td>
<td>g1-8</td>
</tr>
<tr>
<td>19</td>
<td>224-239.130</td>
<td>2.2.8</td>
<td>g9-11</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224-239.130</td>
<td>2.2.3</td>
</tr>
<tr>
<td>19</td>
<td>224-239.130</td>
<td>2.2.8</td>
</tr>
</tbody>
</table>
### Assigning Multicast Forward All Parameters

The **Bridge Multicast Forward All** page contains fields for attaching ports or LAGs to a device that is attached to a neighboring Multicast router/switch. Once IGMP Snooping is enabled, Multicast packets are forwarded to the appropriate port or VLAN.

To open the **Bridge Multicast Forward All** page, click **Switch→Multicast Support→Bridge Multicast→Bridge Multicast Forward All** page in the tree view.

**Figure 7-113. Bridge Multicast Forward All**

- **VLAN ID** — Identifies a VLAN.
- **Ports** — Ports that can be added to a Multicast service.
- **LAGs** — LAGs that can be added to a Multicast service.

The **Bridge Multicast Forward All Router/Port Control Settings Table** contains the settings for managing router and port settings.

**Table 7-77. Bridge Multicast Forward All Router/Port Control Settings Table**

<table>
<thead>
<tr>
<th>Port Control</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Attaches the port to the Multicast router or switch as a dynamic port.</td>
</tr>
<tr>
<td>S</td>
<td>Attaches the port to the Multicast router or switch as a static port.</td>
</tr>
<tr>
<td>F</td>
<td>Forbidden.</td>
</tr>
<tr>
<td>Blank</td>
<td>The port is not attached to a Multicast router or switch.</td>
</tr>
</tbody>
</table>
Attaching a Port to a Multicast Router or Switch

1. Open Bridge Multicast Forward All page.
2. Define the VLAN ID field.
3. Select a port in the Ports table, and assign the port a value.
4. Click Apply Changes.
   
The port is attached to the Multicast router or switch.

Attaching a LAG to a Multicast Router or Switch

1. Open Bridge Multicast Forward All page.
2. Define the VLAN ID field.
3. Select a port in the LAGs table, and assign the LAG a value.
4. Click Apply Changes.
   
The LAG is attached to the Multicast router or switch.

Managing LAGs and Ports Attached to Multicast Routers Using CLI Commands

The following table summarizes the equivalent CLI commands for managing LAGs and ports attached to Multicast routers as displayed on the Bridge Multicast Forward All page.

Table 7-78. CLI Commands for Managing LAGs and Ports Attached to Multicast Routers

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show bridge multicast filtering</td>
<td>Displays the Multicast filtering configuration.</td>
</tr>
<tr>
<td>vlan-id</td>
<td></td>
</tr>
<tr>
<td>no bridge multicast forbidden</td>
<td>Disables forwarding Multicast packets on a port.</td>
</tr>
<tr>
<td>forward-all</td>
<td></td>
</tr>
<tr>
<td>bridge multicast forward-all</td>
<td>Enables forwarding of all Multicast packets on a port. Use the no form of this</td>
</tr>
<tr>
<td>(add</td>
<td>remove) (ethernet interface-list</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console(config)# vlan database
console(config-if)# vlan 8
console(config-vlan)# exit
console(config)# interface range ethernet g1-9
console(config-if)# switchport mode general
console(config-if)# switchport general allow vlan add 8
Console(config-if)# exit
console(config)# interface vlan 8
Console(config-if)# bridge multicast address 0100.5e02.0203 add ethernet g1-9
Console(config-if)# exit
Console (config)# interface VLAN 1
Console (config-if)# bridge multicast forward-all add ethernet g8
Console(config-if)# end
Console # show bridge multicast filtering 1
Filtering: Enabled
VLAN: Forward-All

<table>
<thead>
<tr>
<th>Port</th>
<th>Static</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>Forbidden</td>
<td>Filter</td>
</tr>
<tr>
<td>g2</td>
<td>Forward</td>
<td>Forward(s)</td>
</tr>
<tr>
<td>g3</td>
<td>-</td>
<td>Forward(d)</td>
</tr>
</tbody>
</table>
```
IGMP Snooping

The IGMP Snooping page contains fields for adding IGMP members. To open the IGMP Snooping page, click Switch → Multicast Support → IGMP Snooping in the tree view.

Figure 7-114. IGMP Snooping

VLAN ID — Specifies the VLAN ID.
IGMP Snooping Status — Enables or disables IGMP snooping on the VLAN.
Auto Learn — Enables or disables Auto Learn on the device.
Host Timeout (1-2147483647) — Time before an IGMP snooping entry is aged out. The default time is 260 seconds.
Multicast Router Timeout (1-2147483647) — Time before aging out a Multicast router entry. The default value is 300 seconds.
Leave Timeout (0-2147483647) — Time, in seconds, after a port leave message is received before the entry is aged out. User-defined enables a user-definable timeout period, and Immediate Leave specifies an immediate timeout period. The default timeout is 10 seconds.

Enabling IGMP Snooping on the Device

1 Open the IGMP Snooping page.
2 Select the VLAN ID for the device on which IGMP snooping needs to be enabled.
3 Select Enable in the IGMP Snooping Status field.
4 Complete the fields on the page.
5 Click Apply Changes.
IGMP snooping is enabled on the device.

**Displaying the IGMP Snooping Table**

1. Open the IGMP Snooping.
2. Click Show All.
   
The IGMP Snooping Table opens.

**Configuring IGMP Snooping with CLI Commands**

The following table summarizes the equivalent CLI commands for configuring IGMP Snooping on the device:

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp snooping</code></td>
<td>Enables Internet Group Membership Protocol (IGMP) snooping.</td>
</tr>
<tr>
<td><code>ip igmp snooping mrouter learn-pim-dvmrp</code></td>
<td>Enables automatic learning of Multicast router ports in the context of a specific VLAN.</td>
</tr>
<tr>
<td><code>ip igmp snooping host-time-out time-out</code></td>
<td>Configures the host-time-out.</td>
</tr>
<tr>
<td><code>ip igmp snooping mrouter-time-out time-out</code></td>
<td>Configures the mrouter-time-out.</td>
</tr>
<tr>
<td>`ip igmp snooping leave-time-out {time-out</td>
<td>immediate-leave}`</td>
</tr>
<tr>
<td><code>show ip igmp snooping groups</code> <code>[vlan vlan-id] [address ip-multicast-address]</code></td>
<td>Displays the Multicast groups learned by IGMP snooping.</td>
</tr>
<tr>
<td><code>show ip igmp snooping interface vlan-id</code></td>
<td>Displays ICMP snooping configuration.</td>
</tr>
<tr>
<td><code>show ip igmp snooping mrouter [interface vlan-id]</code></td>
<td>Displays information about dynamically learned Multicast router interfaces.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:
Console> enable
Console# config
Console (config)# ip igmp snooping
Console (config)# interface vlan 1
Console (config-if)# ip igmp snooping mrouter learn-pim-dvmrp
Console (config-if)# ip igmp snooping host-time-out 300
Console (config-if)# ip igmp snooping mrouter-time-out 200
Console (config-if)# exit
Console (config)# interface vlan 1
Console (config-if)# ip igmp snooping leave-time-out 60
Console (config-if)# exit
Console (config)# exit
Console # show ip igmp snooping groups

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Querier</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224-239.130</td>
<td>2.2.3</td>
<td>Yes</td>
</tr>
<tr>
<td>19</td>
<td>224-239.130</td>
<td>2.2.8</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Console # show ip igmp snooping interface 1
IGMP Snooping is globally enabled
IGMP Snooping is enabled on VLAN 1
IGMP host timeout is 300 sec
IGMP Immediate leave is disabled. IGMP leave timeout is 60 sec
IGMP mrouter timeout is 200 sec
Automatic learning of multicast router ports is enabled

Console # show ip igmp snooping mrouter
<table>
<thead>
<tr>
<th>VLAN</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>g1</td>
</tr>
</tbody>
</table>
Viewing Statistics

The Statistic pages contains device information for interface, GVRP, etherlike, RMON, and device utilization. To open the Statistics page, click Statistics in the tree view.

**NOTE:** CLI commands are not available for all the Statistics pages.
**Viewing Tables**

The Table Views page contains links for displaying statistics in a chart form. To open the page, click Statistics→Table in the tree view.

**Viewing Utilization Summary**

The Utilization Summary page contains statistics for interface utilization. To open the page, click Statistics→Table Views→Utilization Summary in the tree view.

*Figure 8-115. Utilization Summary*
**Refresh Rate** — The amount of time that passes before the interface statistics are refreshed.

**Interface** — The interface number.

**Interface Status** — Status of the interface.

**% Interface Utilization** — Network interface utilization percentage based on the duplex mode of the interface. The range of this reading is from 0 to 200%. The maximum reading of 200% for a full duplex connection indicates that 100% of bandwidth of incoming and outgoing connections is used by the traffic travelling through the interface. The maximum reading for a half duplex connection is 100%.

**% Unicast Received** — Percentage of Unicast packets received on the interface.

**% Non Unicast Packets Received** — Percentage of non-Unicast packets received on the interface.

**% Error Packets Received** — Number packets with errors received on the interface.

**Global System LAG** — Current LAG/trunk performance.
Viewing Counter Summary

The Counter Summary page contains statistics for port utilization in numeric sums as opposed to percentages. To open the Counter Summary page, click Statistics/RMON→Table Views→Counter Summary in the tree view.

Figure 8-116. Counter Summary

Refresh Rate — The amount of time that passes before the interface statistics are refreshed.

Interface — The interface number.

Interface Status — The interface status.

Received Unicast Packets — Number of received Unicast packets on the interface.

Received Non Unicast Packets — Number of received non-Unicast packets on the interface.

Transmit Unicast Packets — Number of transmitted Unicast packets from the interface.

Transmit Non Unicast Packets — Number of transmitted non-Unicast packets from the interface.

Received Errors —

Global System LAG — Current LAG/trunk performance.
**Viewing Interface Statistics**

The Interface Statistics page contains statistics for both received and transmitted packets. The fields for both received and transmitted packets are identical. To open the Interface Statistics page, click Statistics/RMON→Table Views→Interface Statistics in the tree view.

*Figure 8-117. Interface Statistics*
Interface — Specifies whether statistics are displayed for a port or LAG.

Refresh Rate — Amount of time that passes before the interface statistics are refreshed.

**Receive Statistics**

- **Total Bytes (Octets)** — Total number of octets received on the selected interface.
- **Unicast Packets** — Number of Unicast packets received on the selected interface.
- **Multicast Packets** — Number of Multicast packets received on the selected interface.
- **Broadcast Packets** — Number of Broadcast packets received on the selected interface.
- **Packets with Errors** — Number of error packets received from the selected interface.

**Transmit Statistics**

- **Total Bytes (Octets)** — Total number of octets transmitted on the selected interface.
- **Unicast Packets** — Number of Unicast packets transmitted on the selected interface.
- **Multicast Packets** — Number of Multicast packets transmitted on the selected interface.
- **Broadcast Packets** — Number of Broadcast packets transmitted on the selected interface.
- **Packets with Errors** — Number of error packets transmitted from the selected interface.

**Displaying Interface Statistics**

1. Open the Interface Statistics page.
2. Select an interface in the Interface field.
   The interface statistics are displayed.

**Resetting Interface Statistics Counters**

1. Open the Interface Statistics page.
2. Click Reset All Counters.
   The interface statistics counters are reset.

**Viewing Interface Statistics Using the CLI Commands**

The following table summarizes the equivalent CLI commands for viewing interface statistics.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces counters [ethernet interface</td>
<td>Displays traffic seen by the physical interface.</td>
</tr>
<tr>
<td>port-channel port-channel-number]</td>
<td>port-channel]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

300 | Viewing Statistics
The following is an example of the CLI commands.

```
Console> enable

Console# **show interfaces counters**

<table>
<thead>
<tr>
<th>Port</th>
<th>InOctets</th>
<th>InUcastPkts</th>
<th>InMcastPkts</th>
<th>InBcastPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>183892</td>
<td>1289</td>
<td>987</td>
<td>8</td>
</tr>
<tr>
<td>g2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g3</td>
<td>123899</td>
<td>1788</td>
<td>373</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>OutOctets</th>
<th>OutUcastPkts</th>
<th>OutMcastPkts</th>
<th>OutBcastPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>g4</td>
<td>9188</td>
<td>9</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>g5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g6</td>
<td>8789</td>
<td>27</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ch</th>
<th>InOctets</th>
<th>InUcastPkts</th>
<th>InMcastPkts</th>
<th>InBcastPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27889</td>
<td>928</td>
<td>0</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ch</th>
<th>OutOctets</th>
<th>OutUcastPkts</th>
<th>OutMcastPkts</th>
<th>OutBcastPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23739</td>
<td>882</td>
<td>0</td>
<td>122</td>
</tr>
</tbody>
</table>
Viewing Etherlike Statistics

Figure 8-118. Etherlike Statistics
Interface — Specifies whether statistics are displayed for a port or LAG.

Refresh Rate — Amount of time that passes before the interface statistics are refreshed.

Frame Check Sequence (FCS) Errors — Number of FCS errors received on the selected interface.

Single Collision Frames — Number of single collision frames received on the selected interface.

Multiple Collision Frames — Number of multiple collisions frames received on the selected interface.

Single Quality Error (SQE) Test Errors — Number of SQE test errors received on the selected interface.

Deferred Transmissions — Number of deferred transmissions on the selected interface.

Late Collisions — Excessive Collisions — Number of excessive collisions received on the selected interface.

Internal MAC Transmit Errors — Number of internal MAC transmit errors on the selected interface.

Carrier Sense Errors — Number of carrier sense errors on the selected interface.

Oversize Packets — Number of oversized packet errors on the selected interface.

Internal MAC Receive Errors — Number of internal MAC received errors on the selected interface.

Single Quality Errors (SQE) Test Errors — The amount of SQE test errors received on the selected interface.

Receive Pause Frames — Number of received paused frames on the selected interface.

Transmitted Paused Frames —

Displaying Etherlike Statistics for an Interface

1. Open the Etherlike Statistics page.
2. Select an interface in the Interface field.

 The interface’s Etherlike statistics are displayed.

Resetting Etherlike Statistics

1. Open the Etherlike Statistics page.
2. Click Reset All Counters.

 The Ethernetlike statistics are reset.
Viewing Etherlike Statistics Using the CLI Commands

The following table summarizes the equivalent CLI commands for viewing etherlike statistics.

Table 8-81. Etherlike Statistics CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show interfaces counters [ethernet interface</td>
<td>Displays traffic seen by the physical</td>
</tr>
<tr>
<td></td>
<td>port-channel port-channel-number]`</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands.

```
Console> enable
Console# show interfaces counters ethernet g1
```

<table>
<thead>
<tr>
<th>Port</th>
<th>InOctets</th>
<th>InUcastPkts</th>
<th>InMcastPkts</th>
<th>InBcastPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Port</td>
<td>OutOctets</td>
<td>OutUcastPkts</td>
<td>OutMcastPkts</td>
<td>OutBcastPkts</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>g1</td>
<td>9188</td>
<td>9</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

FCS Errors: 8
Single Collision Frames: 0
Multiple Collision Frames: 0
SQE Test Errors: 0
Deferred Transmissions: 0
Late Collisions: 0
Excessive Collisions: 0
Internal MAC Tx Errors: 0
Carrier Sense Errors: 0
Oversize Packets: 0
Internal MAC Rx Errors: 0
Received Pause Frames: 0
Transmitted Pause Frames: 0
Viewing GVRP Statistics

The GVRP Statistics page contains device statistics for GVRP. To open the page, click **Statistics/RMON**→**Table Views**→**GVRP Statistics** in the tree view.

Figure 8-119. GVRP Statistics
Interface — Specifies whether statistics are displayed for a port or LAG.

Refresh Rate — Amount of time that passes before the interface statistics are refreshed.

Join Empty — Device GVRP Join Empty statistics.

Empty — Device GVRP Empty statistics.

Leave Empty — Device GVRP Leave Empty statistics.

Join In — Device GVRP Join In statistics.

Leave In — Device GVRP Leave In statistics.

Leave All — Device GVRP Leave all statistics.

Invalid Attribute Type — Device GVRP Invalid Attribute ID statistics.

Invalid Attribute Value — Device GVRP Invalid Attribute Value statistics.

Invalid Attribute Length — Device GVRP Invalid Attribute Length statistics.

Invalid Events — Device GVRP Invalid Events statistics.

Displaying GVRP Statistics for a Port

1. Open the GVRP Statistics page.
2. Select an interface in the Interface field.
 The interface’s GVRP statistics are displayed.

Resetting GVRP Statistics

1. Open the GVRP Statistics page.
2. Click Reset All Counters.
 The GVRP counters are reset.

Viewing GVRP Statistics Using the CLI Commands

The following table summarizes the equivalent CLI commands for viewing GVRP statistics.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show gvrp statistics [ethernet interface</td>
<td>port-channel port-channel-number]</td>
</tr>
<tr>
<td>show gvrp error-statistics [ethernet interface</td>
<td>port-channel port-channel-number]</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
Console# show gvrp statistics

GVRP statistics:
----------------
rJE  : Join Empty Received rJIn : Join In Received
rEmp : Empty Received   rLIn : Leave In Received
rLE  : Leave Empty Received rLA : Leave All Received
sJE  : Join Empty Sent   sJIn : Join In Sent
sEmp : Empty Sent       sLIn : Leave In Sent
sLE  : Leave Empty Sent  sLA : Leave All Sent

<table>
<thead>
<tr>
<th>Port</th>
<th>rJE</th>
<th>rJIn</th>
<th>rEmp</th>
<th>rLIn</th>
<th>rLE</th>
<th>rLA</th>
<th>sJE</th>
<th>sJIn</th>
<th>sEmp</th>
<th>sLIn</th>
<th>sLE</th>
<th>sLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>0</td>
</tr>
<tr>
<td>g2</td>
<td>0</td>
</tr>
<tr>
<td>g3</td>
<td>0</td>
</tr>
<tr>
<td>g4</td>
<td>0</td>
</tr>
<tr>
<td>g5</td>
<td>0</td>
</tr>
<tr>
<td>g6</td>
<td>0</td>
</tr>
<tr>
<td>g7</td>
<td>0</td>
</tr>
<tr>
<td>g8</td>
<td>0</td>
</tr>
</tbody>
</table>

Console# show gvrp error-statistics

GVRP error statistics:
----------------------
Legend:
INVPROT  : Invalid Protocol Id  INVPLEN  : Invalid PDU Length
INVATYP  : Invalid Attribute Type INVALEN  : Invalid Attribute Length
```
<table>
<thead>
<tr>
<th>Port</th>
<th>INVPROT</th>
<th>INVATYP</th>
<th>INVAVAL</th>
<th>INVALEN</th>
<th>INVEVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

INVAVAL : Invalid Attribute Value
INVEVENT : Invalid Event
Viewing EAP Statistics

The EAP Statistics page contains information about EAP packets received on a specific port. For more information about EAP, see “Port Based Authentication (802.1x)”. To open the EAP Statistics page, click Statistics/RMON > Table Views > EAP Statistics in the tree view.

Figure 8-120. EAP Statistics

![EAP Statistics Screenshot](image)

- **Port** — The port which is polled for statistics.
- **Refresh Rate** — Amount of time that passes before the interface statistics are refreshed.
- **Frames Receive** — The number of valid EAPOL frames received on the port.
- **Frames Transmit** — The number of EAPOL frames transmitted via the port.
- **Start Frames Receive** — The number of EAPOL Start frames received on the port.
- **Log off Frames Receive** — The number of EAPOL Logoff frames that have been received on the port.
- **Respond ID Frames Receive** — The number of EAP Resp/Id frames that have been received on the port.
- **Respond Frames Receive** — The number of valid EAP Response frames received on the port.
- **Request ID Frames Transmit** — The number of EAP Requested ID frames transmitted via the port.
- **Request Frames Transmit** — The number of EAP Request frames transmitted via the port.
- **Invalid Frames Receive** — The number of unrecognized EAPOL frames received on this port.
Length Error Frames Receive — The number of EAPOL frames with an invalid Packet Body Length received on this port.

Last Frame Version — The protocol version number attached to the most recently received EAPOL frame.

Last Frame Source — The source MAC address attached to the most recently received EAPOL frame.

Displaying EAP statistics for a Port

1. Open the EAP Statistics page.
2. Select an interface in the Interface field.
 The interface EAP statistics are displayed.

Resetting the EAP Statistics

1. Open the EAP Statistics page.
2. Click Reset All Counters to reset the counter.
 The EAP statistics are reset.

Viewing EAP Statistics Using the CLI Commands

The following table summarizes the CLI commands for viewing EAP statistics.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot1x statistics ethernet interface</td>
<td>Displays 802.1X statistics for the specified interface.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
Switch# show dot1x statistics ethernet g1
EapolFramesRx: 11
EapolFramesTx: 12
EapolStartFramesRx: 1
EapolLogoffFramesRx: 1
EapolRespIdFramesRx: 3
EapolRespFramesRx: 6
EapolReqIdFramesRx: 3
EapolReqFramesRx: 6
InvalidEapolFramesRx: 0
EapLengthErrorFramesRx: 0
LastEapolFrameVersion: 1
LastEapolFrameSource: 0008.3b79.8787
```
Viewing RMON Statistics

Remote Monitoring (RMON) contains links for viewing network information from a remote location. To open the RMON page, click Statistics/RMON→RMON in the tree view.

Viewing RMON Statistics Group

The RMON Statistics page contains fields for viewing information about device utilization and errors that occurred on the device. To open the RMON Statistics page, click Statistics/RMON→RMON→Statistics in the tree view.

Figure 8-121. RMON Statistics
Interface — Specifies the port or LAG for which statistics are displayed.

Refresh Rate — Amount of time that passes before the statistics are refreshed.

Drop Events — Number of dropped events that have occurred on the interface since the device was last refreshed.

Received Bytes (Octets) — Number of octets received on the interface since the device was last refreshed. This number includes bad packets and FCS octets, but excludes framing bits.

Received Packets — Number of packets received on the interface, including bad packets, Multicast and broadcast packets, since the device was last refreshed.

Broadcast Packets Received — Number of good broadcast packets received on the interface since the device was last refreshed. This number does not include Multicast packets.

Multicast Packets Received — Number of good Multicast packets received on the interface since the device was last refreshed.

CRC & Align Errors — Number of CRC and Align errors that have occurred on the interface since the device was last refreshed.

Undersize Packets — Number of undersized packets (less than 64 octets) received on the interface since the device was last refreshed.

Oversize Packets — Number of oversized packets (over 1518 octets) received on the interface since the device was last refreshed.

Fragments — Number of fragments (packets with less than 64 octets, excluding framing bits, but including FCS octets) received on the interface since the device was last refreshed.

Jabbers — Number of jabbers (packets longer than 1518 octets) received on the interface since the device was last refreshed.

Collisions — Number of collisions received on the interface since the device was last refreshed.

Frames of xx Bytes — Number of xx-byte frames received on the interface since the device was last refreshed.

Viewing Interface Statistics

1. Open the RMON Statistics page.

2. Select an interface type and number in the **Interface** field.

 The interface statistics are displayed.
Viewing RMON Statistics Using the CLI Commands

The following table summarizes the equivalent CLI commands for viewing RMON statistics.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show rmon statistics (ethernet interface</td>
<td>port-channel port-channel-number)</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
console> enable

Console# show rmon statistics ethernet g1
Port g1
Dropped: 8
Octets: 878128 Packets: 978
Broadcast: 7 Multicast: 1
CRC Align Errors: 0 Collisions: 0
Undersize Pkts: 0 Oversize Pkts: 0
Fragments: 0 Jabbers: 0
64 Octets: 98 65 to 127 Octets: 0
128 to 255 Octets: 0 256 to 511 Octets: 0
512 to 1023 Octets: 4 91 1024 to 1518 Octets: 389
```
Viewing RMON History Control Statistics

The RMON History Control page contains information about samples of data taken from ports. For example, the samples may include interface definitions or polling periods. To open the RMON History Control page, click Statistics/RMON→History Control in the tree view.

Figure 8-122. RMON History Control

History Entry No. — Entry number for the History Control Table page.

Source Interface — Port or LAG from which the history samples were taken.

Owner (0-20 characters) — RMON station or user that requested the RMON information.

Max No. of Samples to Keep (1-65535) — Number of samples to be saved. The default value is 50.

Current No. of Samples in List — The current number of samples taken.

Sampling Interval (1-3600) — Indicates in seconds the time that samples are taken from the ports. The possible values are 1-3600 seconds. The default is 1800 seconds (30 minutes).

Remove — When selected, removes the History Control Table entry.

Adding a History Control Entry

1. Open the RMON History Control page.
2. Click Add.
 The Add History Entry page opens.
3. Complete the fields in the dialog.
4. Click Apply Changes.
 The entry is added to the History Control Table.
Modifying a History Control Table Entry
1. Open the RMON History Control page.
2. Select an entry in the History Entry No. field.
3. Modify the fields as required.
4. Click Apply Changes.
 The table entry is modified, and the device is updated.

Deleting a History Control Table Entry
1. Open the RMON History Control page.
2. Select an entry in the History Entry No. field.
3. Click Remove.
4. Click Apply Changes.
 The selected table entry is deleted, and the device is updated.

Viewing RMON History Control Using the CLI Commands
The following table summarizes the equivalent CLI commands for viewing GVRP statistics.

Table 8-85. RMON History CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmon collection history index</td>
<td>Enables and configures RMON on an interface.</td>
</tr>
<tr>
<td>[owner ownername</td>
<td>buckets</td>
</tr>
<tr>
<td>show rmon collection history</td>
<td>Displays RMON collection history statistics.</td>
</tr>
<tr>
<td>[ethernet interface</td>
<td>port-channel port-channel-number]</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# interface ethernet g8
Console (config-if)# rmon collection history 1 interval 2400
Console (config-if)# exit
Console (config)# exit
```
Viewing the RMON History Table

The RMON History Table contains interface specific statistical network samplings. Each table entry represents all counter values compiled during a single sample. To open the RMON History Table, click Statistics/RMON→RMON→History Table in the tree view.

Figure 8-123. RMON History Table
Sample No. — The specific sample the information in the table reflects.

Drop Events — The number of dropped packets due to lack of network resources during the sampling interval. This may not represent the exact number of dropped packets, but rather the number of times dropped packets were detected.

Received Bytes (Octets) — The number of data octets, including bad packets, received on the network.

Received Packets — The number of packets received during the sampling interval.

Broadcast Packets — The number of good broadcast packets received during the sampling interval.

Multicast Packets — The number of good Multicast packets received during the sampling interval.

CRC Align Errors — The number of packets received during the sampling session with a length of 64-1518 octets, a bad Check Sequence (FCS), and with an integral number of octets, or a bad FCS with a non-integral number.

Undersize Packets — The number of packets received less than 64 octets long during the sampling session.

Oversize Packets — The number of packets received more than 1518 octets long during the sampling session.

Fragments — The number of packets received less than 64 octets long and had a FCS during the sampling session.

Jabbers — The number of packets received more than 1518 octets long and had a FCS during the sampling session.

Collisions — Estimates the total number of packet collision that occurred during the sampling session. Collision are detected when repeater ports detects two or more stations transmit simultaneously.

Utilization — Estimates the main physical layer network usage on an interface during the session sampling. The value is reflected in hundredths of a percent.

Viewing Statistics for a Specific History Entry

1. Open the RMON History Table.

2. Select an entry in the History Table No. field.
 The entry statistics display in the RMON History Table.
Viewing RMON History Control Using the CLI Commands

The following table summarizes the equivalent CLI commands for viewing RMON history.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show rmon history</td>
<td>Displays RMON Ethernet statistics history.</td>
</tr>
<tr>
<td>index {throughput</td>
<td>errors</td>
</tr>
<tr>
<td>[period seconds]</td>
<td></td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands for displaying RMON ethernet statistics for throughput on index 1:

```
console> enable
Console# show rmon history 1 throughput
Sample Set: 1 Owner: CLI
Interface: g1 Interval: 1800
Requested samples: 50 Granted samples: 50

Maximum table size: 500

<table>
<thead>
<tr>
<th>Time</th>
<th>Octets</th>
<th>Packets</th>
<th>Broadcast</th>
<th>Multicast</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 18 2004 21:57:00</td>
<td>303595962</td>
<td>357568</td>
<td>3289</td>
<td>7287</td>
<td>19.98%</td>
</tr>
<tr>
<td>Jan 18 2004 21:57:30</td>
<td>287696304</td>
<td>275686</td>
<td>2789</td>
<td>2789</td>
<td>20.17%</td>
</tr>
</tbody>
</table>
```
Defining Device RMON Events

The RMON Events Control page contains fields for defining RMON events. To open the RMON Events Control page, click Statistics/RMON→RMON→Events Control in the tree view.

Figure 8-124. RMON Events Control

Event Entry — The event.
Community — Community to which the event belongs.
Description — User-defined event description.
Type — Describes the event type. Possible values are:
 Log — Event type is a log entry.
 Trap — Event type is a trap.
 Log and Trap — Event type is both a log entry and a trap.
 None — There is no event.
Time —

Owner — The device or user that defined the event.
Remove — When selected, removes the event from the RMON Events Table.

Adding an RMON Event

1. Open the RMON Events Control page.
2. Click Add.
The Add an Event Entry page opens.

3 Complete the information in the dialog and click Apply Changes.

The Event Table entry is added, and the device is updated.

Modifying an RMON Event

1 Open the RMON Events Control page
2 Select an entry in the Event Table.
3 Modify the fields in the dialog and click Apply Changes.

The Event Table entry is modified, and the device is updated.

Deleting RMON Event Entries

1 Open the RMON Events Control page.
2 Click Show All.

The Events Table page opens.

3 Select Remove for the event(s) that need to be deleted and then click Apply Changes.

The selected table entry is deleted, and the device is updated.

NOTE: A single event entry can be removed from the RMON Events Control page by selecting the Remove check box on that page.

Defining Device Events Using the CLI Commands

The following table summarizes the equivalent CLI commands for defining device events.

Table 8-87. Device Event Definition CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmon event index type [community text] [description text] [owner name]</td>
<td>Configures RMON events.</td>
</tr>
<tr>
<td>show rmon events</td>
<td>Displays RMON event table.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```bash
console> enable
console# config
console (config)# rmon event 1 log
console (config)# exit
Console# show rmon events
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Type</th>
<th>Community</th>
<th>Owner</th>
<th>Last time sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Errors</td>
<td>Log</td>
<td>CLI</td>
<td>Jan 18 2002 23:58:17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>High Broadcast</td>
<td>Log-Trap</td>
<td>Manager</td>
<td>Jan 18 2002 23:59:48</td>
<td></td>
</tr>
</tbody>
</table>
Viewing the RMON Events Log

The RMON Events Log page contains a list of RMON events. To open the RMON Events Log page, click Statistics/RMON→RMON→Events in the tree view.

Figure 8-125. RMON Events Log

Event — The RMON Events Log entry number.
Log No.— The log number.
Log Time — Time when the log entry was entered.
Description — Describes the log entry.

Defining Device Events Using the CLI Commands

The following table summarizes the equivalent CLI commands for defining device events.

Table 8-88. Device Event Definition CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show rmon log [event]</td>
<td>Displays the RMON logging table.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console> enable
console# config
console (config)# rmon event 1 log
console (config)# exit
Console# show rmon log

Maximum table size: 500

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Errors</td>
<td>Jan 18 2002 23:48:19</td>
</tr>
<tr>
<td>1</td>
<td>Errors</td>
<td>Jan 18 2002 23:58:17</td>
</tr>
<tr>
<td>2</td>
<td>High Broadcast</td>
<td>Jan 18 2002 23:59:48</td>
</tr>
</tbody>
</table>

Console# show rmon log

Maximum table size: 500 (800 after reset)

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Errors</td>
<td>Jan 18 2002 23:48:19</td>
</tr>
<tr>
<td>1</td>
<td>Errors</td>
<td>Jan 18 2002 23:58:17</td>
</tr>
<tr>
<td>2</td>
<td>High Broadcast</td>
<td>Jan 18 2002 23:59:48</td>
</tr>
</tbody>
</table>
```
Defining RMON Device Alarms

The RMON Alarms page contains fields for setting network alarms. Network alarms occur when a network problem, or event, is detected. Rising and falling thresholds generate events. To open the RMON Alarms page, click Statistics/RMON→RMON→Alarms in the tree view.

Figure 8-126. RMON Alarms

![RMON Alarms](image)

Alarm Entry — Indicates a specific alarm.

Interface — The interface for which RMON statistics are displayed.

Counter Name — The selected MIB variable.

Counter Value — The value of the selected MIB variable.

Sample Type — Specifies the sampling method for the selected variable and comparing the value against the thresholds. The possible field values are:

- **Delta** — Subtracts the last sampled value from the current value. The difference in the values is compared to the threshold.

- **Absolute** — Compares the values directly with the thresholds at the end of the sampling interval.
Rising Threshold — The rising counter value that triggers the rising threshold alarm. The rising threshold is presented on top of the graph bars. Each monitored variable is designated a color.

Rising /Falling Event — The mechanism in which the alarms are reported — LOG, TRAP, or a combination of both. When LOG is selected, there is no saving mechanism either in the device or in the management system. However, if the device is not being reset, it remains in the device LOG table. If TRAP is selected, an SNMP trap is generated and reported via the trap’s general mechanism. The TRAP can be saved using the same mechanism.

Falling Threshold — The falling counter value that triggers the falling threshold alarm. The falling threshold is graphically presented on the graph bars. Each monitored variable is designated a color.

Startup Alarm — The trigger that activates the alarm generation. Rising is defined by crossing the threshold from a low-value threshold to a higher-value threshold.

Interval (sec) — Alarm interval time.

Owner — Device or user that defined the alarm.

Remove — When selected, removes an RMON Alarm.

Adding an Alarm Table Entry

1. Open the RMON Alarms page.
2. Click Add.
 The Add an Alarm Entry page opens:

 Figure 8-127. Add an Alarm Entry Page

3. Select an interface.
4. Complete the fields in the dialog.
5 Click Apply Changes.
The RMON alarm is added, and the device is updated.

Modifying an Alarm Table Entry
1 Open the RMON Alarms page.
2 Select an entry in the Alarm Entry drop-down menu.
3 Modify the fields in the dialog as required.
4 Click Apply Changes.
The entry is modified, and the device is updated.

Displaying the Alarm Table
1 Open the RMON Alarms page.
2 Click Show All.
The Alarms Table page opens.

Deleting an Alarm Table Entry
1 Open the RMON Alarms page.
2 Select an entry in the Alarm Entry drop-down menu.
3 Select the Remove check box.
4 Click Apply Changes.
The selected entry is deleted, and the device is updated.

Defining Device Alarms Using the CLI Commands
The following table summarizes the equivalent CLI commands for defining device alarms.

Table 8-89. Device Alarm CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmon alarm index variable interval rthreshold fthreshold revent fevent [type type] [startup direction] [owner name]</td>
<td>Configures RMON alarm conditions.</td>
</tr>
<tr>
<td>show rmon alarm-table</td>
<td>Displays summary of the alarm table.</td>
</tr>
<tr>
<td>show rmon alarm</td>
<td>Displays RMON alarm configuration.</td>
</tr>
</tbody>
</table>
The following is an example of the CLI commands:

```
console> enable
console# config

Console (config)# rmon alarm 1000 dell 360000 1000000 1000000 10 20

Console# show rmon alarm-table

<table>
<thead>
<tr>
<th>Index</th>
<th>OID</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3.6.1.2.1.2.2.1.1</td>
<td>CLI</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.3.6.1.2.1.2.2.1.1</td>
<td>Manager</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.3.6.1.2.1.2.2.1.1</td>
<td>CLI</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>
```
Viewing Charts

The Chart page contains links for displaying statistics in a chart form. To open the page, click Statistics→Charts in the tree view.

Viewing Port Statistics

Figure 8-128. Port Statistics

Interface Statistics — Selects the type of interface statistics to open.
Etherlike Statistics — Selects the type of Etherlike statistics to open.
RMON Statistics — Selects the type of RMON statistics to open.
GVRP Statistics — Selects the GVRP statistics type to open.
Refresh Rate — Amount of time that passes before the statistics are refreshed.

Displaying Port Statistics

1. Open the Port Statistics page.
2. Select the statistic type to open.
3. Select the desired refresh rate from the Refresh Rate drop-down menu.
4. Click Draw.
The graph for the selected statistic is displayed.

Viewing Port Statistics Using the CLI Commands

The following table summarizes the equivalent CLI commands for viewing port statistics.

<table>
<thead>
<tr>
<th>Table 8-90. Port Statistic CLI Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI Command</td>
</tr>
<tr>
<td>show interfaces counters [ethernet interface</td>
</tr>
<tr>
<td>port-channel port-channel-number]</td>
</tr>
<tr>
<td>show rmon statistics {ethernet interface</td>
</tr>
<tr>
<td>port-channel port-channel-number}</td>
</tr>
<tr>
<td>show gvrp statistics {ethernet interface</td>
</tr>
<tr>
<td>port-channel port-channel-number}</td>
</tr>
<tr>
<td>show gvrp error-statistics {ethernet interface</td>
</tr>
<tr>
<td>port-channel port-channel-number}</td>
</tr>
</tbody>
</table>

```
Console# show interfaces description ethernet g1

Port  Description
    ----  ---------------
  g1    Management_port
  g2    R&D_port
  g3    Finance_port

Ch  Description
    ----  ---------------
  l     Output
```
Viewing LAG Statistics

The LAG Statistics page contains fields for opening statistics in a chart form for LAGs. To open the LAG Statistics page, click Statistics→Charts→LAGs in the tree view.

Figure 8-129. LAG Statistics

Interface Statistics — Selects the type of interface statistics to open.
Etherlike Statistics — Selects the type of Etherlike statistics to open.
RMON Statistics — Selects the type of RMON statistics to open.
GVRP Statistics — Selects the type of GVRP statistics to open.
Refresh Rate — Amount of time that passes before the statistics are refreshed.

Displaying LAG Statistics

1. Open the LAG Statistics page.
2. Select the statistic type to open.
3. Select the desired refresh rate from the Refresh Rate drop-down menu.
4. Click Draw.
 The graph for the selected statistic is displayed.
Viewing LAG Statistics Using the CLI Commands

The following table summarizes the equivalent CLI commands for viewing LAG statistics.

Table 8-91. LAG Statistic CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces counters [ethernet interface</td>
<td>port-channel</td>
</tr>
<tr>
<td>show rmon statistics {ethernet interface</td>
<td>port-channel</td>
</tr>
<tr>
<td>show gvrp statistics {ethernet interface</td>
<td>port-channel</td>
</tr>
<tr>
<td>show gvrp error-statistics {ethernet interface</td>
<td>port-channel</td>
</tr>
</tbody>
</table>

Console# show gvrp statistics

GVRP statistics:

 rJE : Join Empty Received rJIn : Join In Received
 rEmp : Empty Received rLIn : Leave In Received
 rLE : Leave Empty Received rLA : Leave All Received
 sJE : Join Empty Sent sJIn : Join In Sent
 sEmp : Empty Sent sLIn : Leave In Sent
 sLE : Leave Empty Sent sLA : Leave All Sent

<table>
<thead>
<tr>
<th>Port</th>
<th>rJE</th>
<th>rJIn</th>
<th>rEmp</th>
<th>rLIn</th>
<th>rLE</th>
<th>rLA</th>
<th>sJE</th>
<th>sJIn</th>
<th>sEmp</th>
<th>sLIn</th>
<th>sLE</th>
<th>sLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>0</td>
</tr>
</tbody>
</table>

Viewing Statistics | 333
Configuring Quality of Service

This section provides information for defining and configuring Quality of Service (QoS) parameters. To open the Click Quality of Service in the tree view.
Quality of Service (QoS) Overview

Quality of Service (QoS) provides the ability to implement QoS and priority queuing within a network. QoS improves network traffic flow based on policies, frame counters and context.

An implementation example that requires QoS include certain types of traffic such as Voice, Video and real-time traffic which can be assigned a high priority queue, while other traffic can be assigned a lower priority queue. The result is an improved traffic flow for traffic with high demand.

QoS is defined by:

- **Classification** — Specifies which packet fields are matched to specific values. All packets matching the user-defined specifications are classified together.
- **Action** — Defines traffic management where packets being forwarded are based on packet information, and packet field values such as VLAN priority (VPT) and DSCP (DiffServ Code Point).

VPT Tag Classification Information

VLAN Priority Tags are used to classify the packets by mapping packets to one of the output queues. VLAN Priority Tag to queue assignments are also user-definable. The table below details the VPT to queue default settings:

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>Forwarding Queue Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q2</td>
</tr>
<tr>
<td>1</td>
<td>q1 (Lowest Priority = Best Effort)</td>
</tr>
<tr>
<td>2</td>
<td>q1 (Lowest Priority = Best Effort)</td>
</tr>
<tr>
<td>3</td>
<td>q2</td>
</tr>
<tr>
<td>4</td>
<td>q3</td>
</tr>
<tr>
<td>5</td>
<td>q3</td>
</tr>
<tr>
<td>6</td>
<td>q4 (Highest Priority)</td>
</tr>
<tr>
<td>7</td>
<td>q4 (Highest Priority)</td>
</tr>
</tbody>
</table>
Packets arriving untagged are assigned a default VPT that is set on a per port basis. The assigned VPT is used to map the packet to the output queue and as the egress VPT.

DSCP values can be mapped to priority queues. The following table contains the default DSCP mapping to forwarding queue values:

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Forwarding Queue Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>q2 (Lowest Priority)</td>
</tr>
<tr>
<td>8-15</td>
<td>q1</td>
</tr>
<tr>
<td>16-23</td>
<td>q1</td>
</tr>
<tr>
<td>24-31</td>
<td>q2</td>
</tr>
<tr>
<td>32-39</td>
<td>q3</td>
</tr>
<tr>
<td>40-47</td>
<td>q4</td>
</tr>
<tr>
<td>48-55</td>
<td>q4</td>
</tr>
<tr>
<td>55-63</td>
<td>q4 (Highest Priority)</td>
</tr>
</tbody>
</table>

DSCP mapping is enabled on a per-system basis.

CoS Services

After packets are assigned to a specific queue, CoS services can be assigned to the queue(s). Output queues are configured with a scheduling scheme by one of the following methods:

- **Strict Priority** — Ensures that time-sensitive applications are always forwarded through an expedited path. Strict Priority allows the prioritization of mission-critical, time-sensitive traffic over less time-sensitive applications.
 For example, under Strict Priority, voice over IP traffic is forwarded before FTP or e-mail (SMTP) traffic.
 The strict priority queue is emptied before the traffic in the remaining queues in forwarded.

- **Weighted Round Robin** — Ensures that a single application does not dominate the device forwarding capacity. Weighted Round Robin (WRR) forwards entire queues in a Round Robin order. Queue priorities are defined by the queue length. The longer the queue length, the higher the queue’s forwarding priority.
 For example, if four queues have queue weights of 1, 2, 3 and 4, packets with the highest forwarding priority are assigned to queue 4, and packets with the lowest forwarding priority assigned to queue 1.
 By providing highest forwarding priority to length 4 queues, weighted round robin processes higher priority traffic, and ensure that low-priority traffic is forwarded satisfactorily.

The scheduling scheme is enabled system-wide. Queues assigned to the strict priority policy are automatically assigned to the highest priority queue By default all values are set as Strict Priority.
When changing to WRR mode the default weight value is one. Queue weight values can be assigned in any order using WRR. WRR values can be assigned system-wide. Best effort traffic is always assigned to the first queue. WRR values must be assigned so that Queue 1 remains best effort.
Defining CoS Global Parameters

Class of Service global parameters are set from the CoS Global Parameter pages.

To open the QoS Settings page, click Quality of Service → CoS Global Parameters → CoS Settings in the tree view.

Figure 9-130. QoS Settings

Quality of Service — Enables or disables managing network traffic using Quality of Service.

Trust Mode — Determines which packet fields to use for classifying packets entering the device. When no rules are defined the traffic containing the predefined packet field (CoS or DSCP) is mapped according to the relevant trust modes table. Traffic not containing a predefined packet field is mapped to best effort. The possible Trust Mode field values are:

CoS — The output queue assignment is determined by the IEEE802.1p VLAN priority tag (VPT) or by the default VPT assigned to a port.

DSCP — The output queue assignment is determined by the DSCP field.

Enabling Quality of Service:

1. Open the QoS Settings page.
2. Select Enable in the CoS Mode field.
3 Click Apply Changes.
 Class of Service is enabled on the device.

Enabling Trust:
1 Open the QoS Settings page.
2 Select Trust in the Trust Mode field.
3 Click Apply Changes.
 Trust is enabled on the device.

Enabling Trust Using the CLI Commands
The following table summarizes the equivalent CLI commands for configuring fields in the QoS Settings page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos trust [cos</td>
<td>dscp]</td>
</tr>
<tr>
<td>no cos trust</td>
<td>Returns to the non-trusted state.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# cos trust dscp
```

Defining QoS Interface Settings

The Interface Cos/QoS Settings page contains fields for defining, per interface, if the selected Trust mode is to be activated. The default priority for incoming untagged packets is also selected in the Interface Cos/QoS Settings page, click Quality of Service → CoS Global Parameters → Interface Settings in the tree view.

Figure 9-131. Interface Cos/QoS Settings
Interface — The specific port or LAG to configure:

Disable "Trust" Mode on Interface —

Set Default CoS For Incoming Traffic To — Sets the default CoS tag value untagged packets. The CoS tag values are 0-7. The default value is 0.

Queue — The queue number.

Queue Mode — Indicates whether the queue is Strict Priority or WRR. This is defined in the Queue Settings screen.

Weight (6-255) — Assigns WRR weights to queues. This field is enabled only for queues in WRR queue mode.

% of WRR Bandwidth — The percentage translation of the weight defined in the Weight (6-255) field.

Assigning QoS/CoS settings for an interface:

2. Select an interface in the Interface field.
3. Define the fields.
4. Click Apply Changes.

The CoS settings are assigned to the interface.
Assigning CoS Interfaces Using the CLI Commands

The following table summarizes the equivalent CLI commands for configuring fields in the Interface Cos/QoS Settings page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos trust</td>
<td>Enables trust state for each.</td>
</tr>
<tr>
<td>qos cos default-cos</td>
<td>Configures the default port CoS value.</td>
</tr>
<tr>
<td>no qos trust</td>
<td>Disables Trust state on each port.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# interface ethernet g5
Console (config-if)# qos trust
Console (config-if)# qos cos 3
```
Defining Queue Settings
The Global Queue Setting page contains fields for configuring the scheduling method by which the queues are maintained. To open the Global Queue Setting page click Quality of Service → CoS Global Parameters → Queue Settings in the tree view.

Figure 9-132. Global Queue Setting

queues — The queue number.

Strict Priority — Specifies if traffic scheduling is based strictly on the queue priority. The default is enabled.

WRR — Specifies if traffic scheduling is based on the Weighted Round Robin (WRR) weights to egress queues.

Defining the Queue Settings
1. Open the Global Queue Setting page.
2. Define the fields.
3. Click Apply Changes.
 The queue settings are defined, and the device is updated.
Assigning Queue Setting Using the CLI Commands

The following table summarizes the equivalent CLI commands for configuring fields in the Global Queue Setting page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wrr-queue bandwidth weight1</code></td>
<td>Assigns Weighted Round Robin (WRR) weights to egress queues.</td>
</tr>
<tr>
<td><code>weight2 . weight_n</code></td>
<td></td>
</tr>
<tr>
<td><code>show qos interface [ethernet interface-number] [queueing]</code></td>
<td>Displays interface QoS data.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# wrr-queue bandwidth 10 20 30 40
Console (config)# exit
Console # exit
Console> show qos interface ethernet g1 queueing
Ethernet g1
wrr bandwidth weights and EF priority:
```
Console (config)# **wrr-queue bandwidth 10 20 30 40**
Console (config)# **exit**
Console # **exit**
Console> **show qos interface ethernet g1 queueing**

Ethernet g1

wrr bandwidth weights and EF priority:

<table>
<thead>
<tr>
<th>qid</th>
<th>weights</th>
<th>Ef</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125</td>
<td>Disable</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>125</td>
<td>Disable</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>125</td>
<td>Disable</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>125</td>
<td>Disable</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Cos queue map:

<table>
<thead>
<tr>
<th>Cos qid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2</td>
</tr>
<tr>
<td>1 1</td>
</tr>
<tr>
<td>2 1</td>
</tr>
<tr>
<td>3 2</td>
</tr>
<tr>
<td>4 3</td>
</tr>
<tr>
<td>5 3</td>
</tr>
<tr>
<td>6 4</td>
</tr>
<tr>
<td>7 4</td>
</tr>
</tbody>
</table>
Mapping CoS Values to Queues

The CoS to Queue Mapping Table page contains fields for classifying CoS settings to traffic queues. To open the CoS to Queue Mapping Table page, click Quality of Service→CoS Global Parameters→CoS to Queue in the tree view.

Figure 9-133. CoS to Queue Mapping Table

Class of Service — Specifies the CoS priority tag values, where zero is the lowest and 7 is the highest.

Queue — The traffic forwarding queue to which the CoS priority is mapped. Four traffic priority queues are supported.

Restore Defaults — Restores the device factory defaults for mapping CoS values to a forwarding queue.

Mapping a CoS value to a Queue

1. Open the CoS to Queue Mapping Table page.
2. Select a CoS entry.
3. Define the queue number in the Queue field.
4. Click Apply Changes.
 The CoS value is mapped to a queue, and the device is updated.
Assigning CoS Values to Queues Using the CLI Commands

The following table summarizes the equivalent CLI commands for configuring fields in the CoS to Queue Mapping Table page.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wrr-queue cos-map queue-id cos1..cos8</code></td>
<td>Maps assigned CoS values to the egress queues.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# wrr-queue cos-map 4 7
```
Mapping DSCP Values to Queues

The DSCP Mapping page provides fields for defining output queue to specific DSCP fields. To open the DSCP Mapping page, click Quality of Service→CoS Global Parameters→DSCP Mapping in the tree view.

NOTE: For the list of the DSCP default queue settings, see “DSCP to Queue Mapping Table Default Values”.

Figure 9-134. DSCP Mapping

DSCP In — The values of the DSCP field within the incoming packet.

Queue — The queue to which packets with the specific DSCP value is assigned. The values are 1-4, where one is the lowest value and four is the highest.

Mapping a DSCP value and assigning priority queue:

1. Open the DSCP Mapping page.
2. Select a value in the DSCP In column.
3. Define the Queue fields.
4. Click Apply Changes.

The DSCP is overwritten, and the value is assigned a forwarding queue.
Assigning DSCP Values Using the CLI Commands

The following table summarizes the equivalent CLI commands for configuring fields in the DSCP Mapping page.

Table 9-98. DSCP Value to Queue CLI Commands

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos map dscp-queue dscp-list to queue-id</td>
<td>Modifies the DSCP to queue mapping.</td>
</tr>
</tbody>
</table>

The following is an example of the CLI commands:

```
Console (config)# qos map dscp-queue 33 40 41 to 1
```
Device Specifications

This appendix includes the information needed for running the device.

Port and Cable Specifications

This section describes the port specifications.

Port Specifications

The following table describes the device port types, as well as, a description of the port types.

<table>
<thead>
<tr>
<th>Table 10-99. Port Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
</tr>
<tr>
<td>PowerConnect 5324</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Port Types

<table>
<thead>
<tr>
<th>RJ-45</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• 10 Base-T</td>
<td></td>
</tr>
<tr>
<td>• 100 Base-T</td>
<td></td>
</tr>
<tr>
<td>• 1000 Base-T</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SFP</th>
<th>Supports Standard Small Form-Factor Gigabit Plug Transceivers</th>
</tr>
</thead>
</table>

Port Settings

| • Auto-negotiation for speed, duplex mode and flow control |
| • Back Pressure |
| • Head of Line Blocking |
| • Auto MDI/MDIX |
| • Port Mirroring |
| • Broadcast Storm Control |
Operating Conditions

This section details operating conditions including operating temperatures and humidity.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>0 to 40 C / 32 to 104 F</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>10% - 90% (non-condensing)</td>
</tr>
</tbody>
</table>

Physical Device Specifications

This section details operating conditions including operating temperatures and humidity.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Size</td>
<td>• 19" Width</td>
</tr>
<tr>
<td></td>
<td>• 1U Height</td>
</tr>
<tr>
<td>Ventilation</td>
<td>Two fans per unit.</td>
</tr>
</tbody>
</table>

Device Memory Specifications

This section details the device memory specifications.

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU DRAM</td>
<td>64MB</td>
</tr>
<tr>
<td>Flash Memory</td>
<td>16MB</td>
</tr>
<tr>
<td>Packet Buffer Memory</td>
<td>2Mb</td>
</tr>
</tbody>
</table>
Feature Specifications

VLAN
- VLAN support for Tagging and Port Based as per IEEE 802.1Q
- Up to 4094 VLANs Supported
- Reserved VLANs for internal system use
- Dynamic VLANs with GVRP support
- Protocol based VLANs

Quality of Service
- Layer 2 Trust Mode (IEEE 802.1p tagging)
- Layer 3 Trust Mode (DSCP)
- Adjustable Weighted Round Robin (WRR)
- Adjustable Strict Queue Scheduling

Layer 2 Multicast
- Dynamic Multicast Support - upto 256 Multicast groups supported in IGMP Snooping or static Multicast

Device Security
- Switch access password protection
- Port-based MAC Address alert and lock-down
- RADIUS remote authentication for switch management access
- TACACS+
- Management access filtering via Management Access Profiles
- SSH/SSL Management Encryptions

Additional Switching Features
- Link Aggregation with support for up to 8 Aggregated Links per device and up to 8 Ports per aggregated link (IEEE 802.3ad)
- LACP Support
- Supports Jumbo Frames up to 10K
- Broadcast Storm Control
- Port Mirroring
Device Management

- Web Based Management Interface
- CLI Accessibility via Telnet
- SNMPv1 and SNMP v2 are supported
- 4 RMON Groups Supported
- TFTP Transfers of Firmware and Configuration Files
- Dual Firmware Images On-Board
- Multiple Configuration File Upload/Download Supported
- Statistics for Error Monitoring and Performance Optimization
- BootP/DHCP IP Address Management Supported
- Syslog Remote Logging Capabilities
- SNTP Support
- Layer 3 Traceroute
- Telnet Client
- DNS Client
Glossary

This glossary contains key technical words of interest.

A

Access Mode
Specifies the method by which user access is granted to the system.

Access Profiles
Allows network managers to define profiles and rules for accessing the device. Access to management functions can be limited to user groups, which are defined by the following criteria:

- Ingress interfaces
- Source IP address and/or Source IP subnets

Aggregated VLAN
Groups several VLANs into a single aggregated VLAN. Aggregating VLANs enables routers to respond to ARP requests for nodes located on different sub-VLANs belonging to the same Super VLAN. Routers respond with their MAC address.

ARP
Address Resolution Protocol. A TCP/IP protocol that converts IP addresses into physical addresses.

ASIC
Application Specific Integrated Circuit. A custom chip designed for a specific application.

Asset Tag
Specifies the user-defined device reference.

Authentication Profiles
Sets of rules which that enables login to and authentication of users and applications.

Auto-negotiation
Allows 10/100 Mbps or 10/100/1000 Mbps Ethernet ports to establish for the following features:

- Duplex/ Half Duplex Mode
- Flow Control
- Speed

B

Back Pressure
A mechanism used with Half Duplex mode that enables a port not to receive a message.

Backplane
The main BUS that carries information in the device.

Backup Configuration Files
Contains a backup copy of the device configuration. The Backup file changes when the Running Configuration file or the Startup file is copied to the Backup file.

Bandwidth
Bandwidth specifies the amount of data that can be transmitted in a fixed amount of time. For digital devices, bandwidth is defined in Bits per Second (bps) or Bytes per Second.

Bandwidth Assignments
The amount of bandwidth assigned to a specific application, user, and/or interface.

Baud
The number of signaling elements transmitted each second.

Best Effort
Traffic is assigned to the lowest priority queue, and packet delivery is not guaranteed.

Boot Version
The boot version.

BootP
Bootstrap Protocol. Enables a workstation to discover its IP address, an IP address of a BootP server on a network, or a configuration file loaded into the boot of a device.

BPDU
Bridge Protocol Data Unit. Provide bridging information in a message format. BPDU's are sent across device information with in Spanning Tree configuration. BPDU packets contain information on ports, addresses, priorities, and forwarding costs.

Bridge
A device that connects two networks. Bridges are hardware specific, however they are protocol independent. Bridges operate at Layer 1 and Layer 2 levels.

Broadcast Domain
Devices sets that receive broadcast frames originating from any device within a designated set. Routers bind Broadcast domains, because routers do not forward broadcast frames.

Broadcasting
A method of transmitting packets to all ports on a network.

Broadcast Storm
An excessive amount of broadcast messages simultaneously transmitted across a network by a single port. Forwarded message responses are heaped onto the network, overloading network resources or causing the network to time out.

For more information about broadcast storms, see "Defining LAG Parameters".

C
CDB
Configuration Data Base. A file containing a device’s configuration information.

Class of Service
Class of Service (CoS). Class of Service is the 802.1p priority scheme. CoS provides a method for tagging packets with priority information. A CoS value between 0-7 is added to the Layer II header of packets, where zero is the lowest priority and seven is the highest.

A overlapping transmission of two or more packets that collide. The data transmitted cannot be used, and the session is restarted.

Combo Ports
A single logical port with two physical connections, including an RJ-45 connection and an SFP connection.

CLI
Command Line Interface. A set of line commands used to configure the system. For more information on using the CLI, see Using the CLI.

Communities
Specifies a group of users which retains the same system access rights.

CPU
Central Processing Unit. The part of a computer that processes information. CPUs are composed of a control unit and an ALU.

D
DHCP Client
An Internet host using DHCP to obtain configuration parameters, such as a network address.

DSCP

Domain
A group of computers and devices on a network that are grouped with common rules and procedures.

Duplex Mode
Permits simultaneous transmissions and reception of data. There are two different types of duplex mode:
- **Full Duplex Mode** — Permits for bisynchronous communication, for example, a telephone. Two parties can transmit information at the same time.

- **Half Duplex Mode** — Permits asynchronous communication, for example, a walkie-talkie. Only one party can transmit information at a time.

E

Egress Ports
Ports from which network traffic is transmitted.

End System
An end user device on a network.

Ethernet
Ethernet is standardized as per IEEE 802.3. Ethernet is the most common implemented LAN standard. Supports data transfer rates of Mbps, where 10, 100 or 1000 Mbps is supported.

EWS
Embedded Web Server. Provides device management via a standard web browser. Embedded Web Servers are used in addition to or in place of a CLI or NMS.

F

FFT
Fast Forward Table. Provides information about forwarding routes. If a packet arrives to a device with a known route, the packet is forwarded via a route listed in the FFT. If there is not a known route, the CPU forwards the packet and updates the FFT.

FIFO
First In First Out. A queuing process where the first packet in the queue is the first packet out of the packet.

Flapping
Flapping occurs when an interfaces state is constantly changing. For example, an STP port constantly changes from listening to learning to forwarding. This may cause traffic loss.

Flow Control
Enables lower speed devices to communicate with higher speed devices, that is, that the higher speed device refrains from sending packets.

Fragment
Ethernet packets smaller than 576 bits.

Frame
Packets containing the header and trailer information required by the physical medium.
G

GARP

General Attributes Registration Protocol. Registers client stations into a Multicast domain.

Gigabit Ethernet

Gigabit Ethernet transmits at 1000 Mbps, and is compatible with existing 10/100 Mbps Ethernet standards.

GVRP

GARP VLAN Registration Protocol. Registers client stations into a VLANs.

H

HOL

Head of Line. Packets are queued. Packets at the head of the queue are forwarded before packets at the end of the line.

Host

A computer that acts as a source of information or services to other computers.

HTTP

I

IC

Integrated Circuit. Integrated Circuits are small electronic devices composed from semiconductor material.

ICMP

Internet Control Message Protocol. Allows gateway or destination host to communicate with a source host, for example, to report a processing error.

IEEE

Institute of Electrical and Electronics Engineers. An Engineering organization that develops communications and networking standards.

IEEE 802.1d

Used in the Spanning Tree Protocol, IEEE 802.1d supports MAC bridging to avoid network loops.

IEEE 802.1p

Prioritizes network traffic at the data-link/MAC sublayer.

IEEE 802.1Q

Defines the operation of VLAN Bridges that permit the definition, operation, and administration of VLANs within Bridged LAN infrastructures.

Image File
System images are saved in two Flash sectors called images (Image 1 and Image 2). The active image stores the active copy; while the other image stores a second copy.

Ingress Port
Ports on which network traffic is received.

IP
Internet Protocol. Specifies the format of packets and their addressing method. IP addresses packets and forwards the packets to the correct port.

IP Address
Internet Protocol Address. A unique address assigned to a network device with two or more interconnected LANs or WANs.

IPX
Internetwork Packet Exchange. Transmits connectionless communications.

J

Jumbo Frames
Enables transporting the identical data in fewer frames. Jumbo Frames reduce overhead, lower processing time, and ensures fewer interrupts.

L

LAG
Link Aggregated Group. Aggregates ports or VLANs into a single virtual port or VLAN.
For more information on LAGs, see [Defining LAG Membership](#).

LAN
Local Area Networks. A network contained within a single room, building, campus or other limited geographical area.

Layer 2
Data Link Layer or MAC Layer. Contains the physical address of a client or server station. Layer 2 processing is faster than Layer 3 processing because there is less information to process.

Layer 4
Establishes a connection and ensures that all data arrives to their destination. Packets inspected at the Layer 4 level are analyzed and forwarding decisions based on their applications.

Load Balancing
Enables the even distribution of data and/or processing packets across available network resources. For example, load balancing may distribute the incoming packets evenly to all servers, or redirect the packets to the next available server.
MAC Address

Media Access Control Address. The MAC Address is a hardware specific address that identifies each network node.

MAC Address Learning

MAC Address Learning characterizes a learning bridge, in which the packet’s source MAC address is recorded. Packets destined for that address are forwarded only to the bridge interface on which that address is located. Packets addressed to unknown addresses are forwarded to every bridge interface. MAC Address Learning minimizes traffic on the attached LANs.

MAC Layer

A sub-layer of the *Data Link Control* (DLC) layer.

Mask

A filter that includes or excludes certain values, for example parts of an IP address.

For example, Unit 2 is inserted in the first minute of a ten-minute cycle, and Unit 1 is inserted in fifth minute of the same cycle, the units are considered the same age.

MD5

Message Digest 5. An algorithm that produces a 128-bit hash. MD5 is a variation of MD4, and increases MD4 security. MD5 verifies the integrity of the communication, authenticates the origin of the communication.

MDI

Media Dependent Interface. A cable used for end stations.

MDIX

Media Dependent Interface with Crossover. (MDIX) A cable used for hubs and switches.

MIB

Management Information Base. MIBs contain information describing specific aspects of network components.

Multicast

Transmits copies of a single packet to multiple ports.

N

NMS

Network Management System. An interface that provides a method of managing a system.

Node

A network connection endpoint or a common junction for multiple network lines. Nodes include:

- Processors
- Controllers
OID
Object Identifier. Used by SNMP to identify managed objects. In the SNMP Manager/Agent network management paradigm, each managed object must have an OID to identify it.

Packets
Blocks of information for transmission in packet switched systems.

PDU
Protocol Data Unit. A data unit specified in a layer protocol consisting of protocol control information and layer user data.

PING
Packet Internet Groper. Verifies if a specific IP address is available. A packet is sent to another IP address and waits for a reply.

Port
Physical ports provide connecting components that allow microprocessors to communicate with peripheral equipment.

Port Mirroring
Monitors and mirrors network traffic by forwarding copies of incoming and outgoing packets from one port to a monitoring port.

Port Speed
Indicates port speed of the port. Port speeds include:
- Ethernet 10 Mbps
- Fast Ethernet 100Mbps
- Gigabit Ethernet 1000 Mbps

Protocol
A set of rules that governs how devices exchange information across networks.

QoS
Quality of Service. QoS allows network managers to decide how and what network traffic is forwarded according to priorities, application types, and source and destination addresses.

Query
Extracts information from a database and presents the information for use.

R
RADIUS

RMON
Remote Monitoring. Provides network information to be collected from a single workstation.

Router
A device that connects to separate networks. Routers forward packets between two or more networks. Routers operate at a Layer 3 level.

RSTP
Rapid Spanning Tree Protocol. Detects and uses network topologies that allow a faster convergence of the spanning tree, without creating forwarding loops.

Running Configuration File
Contains all Startup file commands, as well as all commands entered during the current session. After the device is powered down or rebooted, all commands stored in the Running Configuration file are lost.

S
Segmentation
Divides LANs into separate LAN segments for bridging and routing. Segmentation eliminates LAN bandwidth limitations.

Server
A central computer that provides services to other computers on a network. Services may include file storage and access to applications.

SNMP
Simple Network Management Protocol. Manages LANs. SNMP based software communicates with network devices with embedded SNMP agents. SNMP agents gather network activity and device status information, and send the information back to a workstation.

SNTP
Simple Network Time Protocol. SNTP assures accurate network switch clock time synchronization up to the millisecond.
SoC
System on a Chip. An ASIC that contains an entire system. For example, a telecom SoC application can contain a microprocessor, digital signal processor, RAM, and ROM.

Spanning Tree Protocol
Prevents loops in network traffic. The Spanning Tree Protocol (STP) provides tree topography for any arrangement of bridges. STP provides one path between end stations on a network, eliminating loops.

SSH
Secure Shell. Logs into a remote computer via a network, executes commands, and transfers files from one computer to another.

Startup Configuration
Retains the exact device configuration when the device is powered down or rebooted.

Subnet
Sub-network. Subnets are portions of a network that share a common address component. On TCP/IP networks, devices that share a prefix are part of the same subnet. For example, all devices with a prefix of 157.100.100.100 are part of the same subnet.

Subnet Mask
Used to mask all or part of an IP address used in a subnet address.

Switch
Filters and forwards packets between LAN segments. Switches support any packet protocol type.

TCP/IP
Transmission Control Protocol. Enables two hosts to communicate and exchange data streams. TCP guarantees packet delivery, and guarantees packets are transmitted and received in the order they sent.

Telnet
Terminal Emulation Protocol. Enables system users to log in and use resources on remote networks.

TFTP
Trivial File Transfer Protocol. Uses User Data Protocol (UDP) without security features to transfer files.

Trap
A message sent by the SNMP that indicates that system event has occurred.

Trunking
Link Aggregation. Optimizes port usage by linking a group of ports together to form a single trunk (aggregated groups).
U

UDP

User Data Protocol. Transmits packets but does not guarantee their delivery.

Unicast

A form of routing that transmits one packet to one user.

V

VLAN

Virtual Local Area Networks. Logical subgroups with a Local Area Network (LAN) created via software rather than defining a hardware solution.

W

WAN

Wide Area Networks. Networks that cover a large geographical area.

Wildcard Mask

Specifies which IP address bits are used, and which bits are ignored. A wild card mask of 255.255.255.255 indicates that no bit is important. A wildcard of 0.0.0.0 indicates that all the bits are important.

For example, if the destination IP address 149.36.184.198 and the wildcard mask is 255.36.184.00, the first two bits of the IP address are used, while the last two bits are ignored.
Index

Numerics
802.1d, 23
802.1Q, 23, 261, 264

A
AC unit, 33-34
Access mode, 178
Access profiles, 145
ACE, 355
Address Resolution Protocol, 134, 355
Aggregated link, 275
AH, 355
Alert, 105
Anycast, 90
ARP , 134-135, 138, 355
Asset, 76, 78
Authentication Profiles, 154-155
Authentication profiles, 152
Authentication Trap, 182
Auto-Negotiation, 41

B
Back panels, 33
Backup file, 186
BGP, 356
BootP, 356
BPDU, 356
Bridge Protocol Data Unit, 356
Broadcast, 120
Buttons, 67

C
Cables, 139, 141
CIDR, 357
Class of Service, 22
CLI, 25
CLI Examples, 73
Command Line Interface, 25
Command Mode Overview, 70
Communities, 180
Community table, 177
Configuration, 48
Configuration file, 187
Configuring ARP, 132
Console, 106, 155
CoS, 22, 342
Critical, 105

D
DC unit, 33-34
Debug, 105
Default Gateway, 119
Default settings, 192
Defining device information, 76
Device installation, 37-38
Device representation, 66
Device view, 65-66
DHCP, 24
Dimensions, 31
DNS, 127
Domain Name System, 127
Downloading files, 189
Downloading software, 186
DSCP, 336, 357
DVMRP, 357
Dynamic Address List, 234
Dynamic Address Table, 236

E
EAP, 26, 197
Emergency, 105
Enable, 152, 164
EPG, 358
Error, 105
Ethernet, 267
Extensible Authentication Protocol, 26, 197

F
Fans, 34
Fast Link, 23
Fast link, 245
File Transfer Protocol, 359
Filtering, 262, 265, 279
Firmware, 187
Flow Control, 42
FTP, 359

G
GARP, 237-238, 359
GARP VLAN Registration Protocol, 23, 359
Gateway, 119
GBIC, 359
General Attributes Registration Protocol, 359
Generic Attribute Registration Protocol, 237
GRE, 359
GVRP, 23, 271, 306-307, 359
GVRP Parameters Page, 271

H
Hardware version, 88
Height, 31
HMP, 359
HOL, 359
HTTP, 145
HTTPS, 145

I
ICMP, 359
IDRP, 359
IEEE, 359
IEEE 802.1d, 359
IEEE 802.1p, 359
IEEE 802.1Q, 359
IEEE 802.1Q-, 23
IGMP, 359
iles, 186
Image, 359
Image 1, 360
Image 2, 360
Informational, 105
Ingress, 360
Interface mode, 72
Internetwork Packet Exchange, 360
IP, 360
IP addresses, 120
IPM, 360
IPX, 360
ISIS, 360

J
Jumbo frames, 360

L
L2TP, 360
LACP, 275
LAG, 221, 360
LAGs, 287
LCP, 252
Leds, 31
Light Emitting Diodes, 31
Line, 152
Line Passwords, 162
Link Control Protocol, 252
Local User Database, 159
Locked ports, 213
Log, 104
Log file, 106
Logs, 104, 112
Loops, 240

M
MAC Address, 361
MAC address, 231
MAC addresse, 231
MAC addresses, 209
MAN, 361
Management Access
Lists, 145
Management Access
Methods, 155
Management Information
Base., 361
Management methods, 147
Management security, 145
Master Election/Topology
Discovery Algorithm, 361
MD5, 91, 361
MDI, 20, 215, 361
MDI/MDIX, 42
MDIX, 20, 215, 361
MDU, 361
Message Digest 5, 361
MIB, 177, 361
Multicast, 287

N
NCP, 252
Network Control
Protocols, 252
Network Management
System., 361
Network security, 197
Notice, 105

O
OSPF, 362

P
Package Contents, 36
Package contents, 36
Passwords, 68, 164
PDU, 362
PING, 362
Port, 30
Port aggregation, 274
Port LEDs, 31
Ports, 66, 214, 331
Power supplies, 33
PPP, 362
Profiles, 145
Protocol, 267
PVID, 261, 264

Q
QoS, 336, 341, 343, 362
Quality of Service, 335-336, 363
Queue, 344

R
RADIUS, 152, 170, 172-173, 175, 363
RAM logs, 106
Rapid Spanning Tree
Protocol, 363
RDP, 363
Remote Authentication Dial
In User Service, 26
Remote Authentication Dial-
In User Service, 363
Reset, 89, 119
Reset button, 34
RFC1042, 267
RMON, 313, 315-316, 318,
363
RMON History Control
Page, 316
RPS, 33
RSTP, 23, 363
Rule, 149
Rules, 145-146
Running Configuration
file, 186
RVSP, 363

S
Secure Shell, 155
Security, 145, 197
SFP, 32
Simple Network Management
Protocol, 25, 177, 363
Simple Network Time
Protocol, 26, 90
SNMP, 25, 145, 177-178, 182,
363
SNMP traps, 182
SNTP, 26, 90
Software version, 88
Spanning Tree Protocol, 240, 251
SPF LEDs, 32
SSH, 155, 364
Startup file, 186
Storm control, 225
STP, 23, 240-241, 247
System, 75

T
TACACS, 152, 165
TCP, 24
Telnet, 145, 155
Terminal Access Controller Access Control System, 165
TFTP, 364
Time Domain Reflectometry, 139
Transport Control Protocol, 24
Trap Managers table, 183
Traps, 182, 184
Tree view, 65
Trivial File Transfer Protocol, 364
Trunk Configuration Page, 221
Trust, 340-341

U
UDP, 365
Understanding the interface, 65
Unicast, 90
Uploading files, 189
User Data Protocol, 365

V
Ventilation System, 34
Virtual Local Area Networks, 365
VLAN, 255-256, 261, 264, 287, 365
VLAN ID, 235
VLAN membership, 255
VLAN Port Membership Table, 257
VLAN priority, 336
VLANs, 254
Voltage, 34

W
Warning, 105
Web management system icons, 67
Weighted Round Robin, 344
Width, 31